24小时热门版块排行榜    

查看: 3811  |  回复: 19
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

molech

铁虫 (初入文坛)

[交流] 【分享】DFT计算软件OPENMX

日本研究者开发的DFT计算软件,GNU开源软件,更新的比较快,现在是3.5版本。http://www.openmx-square.org/
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xirainbow

木虫 (正式写手)

★ ★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
aylayl08(金币+2,VIP+0):鼓励交流讨论 11-9 17:43
引用回帖:
Originally posted by y1ding at 2009-10-17 19:50:


我知道软件作者给出两种方案: 1.是直接采用实验值;2。是写个脚本,依次变化晶格常数,然后用状态方程拟和,得到最低能量的情况。

Wien2k 现在也可以作优化了吧,最近审了稿子我看他就是用wien2k优化结构的

y1ding  ,您好;)
请教您 ,
1:对于对称性较低的晶系(除去sc,bcc,fcc,hcp),可以用状态方程去拟合么?
我在pwscf中找到了状态方程拟合模块,但只能处理sc,bcc,fcc,hcp,不能处理诸如正交,单斜,三斜的情况;)
2:对sc,bcc,fcc,hcp的E-a曲线,可以直接用E=b*(a-a0)^2的平方关系去拟合(b和a0是待定参数),从而得到最低能量的晶格常数么?还是必须用物态方程去拟合?
谢谢;)
18楼2009-11-09 17:26:14
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 20 个回答

aylayl08

荣誉版主 (文坛精英)

至尊天蝎

优秀版主

无法显示该网页
珍惜拥有,快乐人生!欢迎光临计算模拟区(*^__^*)。。。。。。。。。。。。。。
2楼2009-10-16 21:31:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

wuli8

荣誉版主 (知名作家)

…………

优秀版主优秀版主

★ ★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
aylayl08(金币+2,VIP+0):谢谢介绍OpenMX 10-16 21:44
What is OpenMX?
OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material simulations based on density functional theories (DFT) [1], norm-conserving pseudopotentials [2,20,21], and pseudo-atomic localized basis functions [23]. Since the code is designed for the realization of large-scale ab initio calculations on parallel computers, it is anticipated that OpenMX can be a useful and powerful tool for nano-scale material sciences in a wide variety of systems such as bio-materials, carbon nanotubes, magnetic materials, and nanoscale conductors. The distribution of the program package and the source codes follow the practice of the GNU General Public License (GPL) [47], and they are downloadable from http:http://www.openmx-square.org/


Features and capabilities of OpenMX Ver. 3.5 are as follows:

Total energy and forces by cluster, band, and O(N) methods
Local density approximation (LDA, LSDA) [2,3,4] and generalized gradient approximation (GGA) [5] to the exchange-correlation potential
Norm-conserving pseudopotentials [2,20,21]
Variationally optimized pseudo-atomic basis functions [23]
Fully and scalar relativistic treatment within pseudopotential scheme [10,19,13]
Non-collinear DFT [6,7,8,9]
Constraint DFT for non-collinear spin and orbital orientation [11]
Collinear LDA+U and non-collinear LDA+U methods [16]
Macroscopic polarization by Berry's phase [12]
Divide-conquer (DC) method [28], generalized DC method, and Krylov subspace method for O(N) eigenvalue solver
Simple, RMM-DIIS [31], GR-Pulay [30], Kerker [32], and RMM-DIIS with Kerker's metric [31] charge mixing schemes
Exchange coupling parameter [14,15]
Optical conductivity
Charge doping
Uniform electric field
Full and constrained geometry optimization
Electric transport calculation by a non-equilibrium Green's function method
Construction of maximally localized wannier functions
NVE ensemble molecular dynamics
NVT ensemble molecular dynamics by a velocity scaling [17] and the Nose-Hoover methods [18]
Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities
Analysis of wave functions and electron (spin) densities
Dispersion analysis by the band calculation
Density of states (DOS) and projected DOS
Flexible data format for the input
Completely dynamic memory allocation
Parallel execution by Message Passing Interface (MPI)
Parallel execution by OpenMP
Useful user interface for developers
Evaluation of two-center integrals using Fourier transformation [27]
Evaluation of three-center integrals by a projector expansion method [24]
Solution of Poisson's equation using FFT [26]
Considerable functionalities are available for calculations of physical properties such as magnetic, dielectric, electric transport properties as listed above. Not only conventional diagonalization schemes are provided for clusters, molecules, slab, and solids, but also linear scaling methods are supported as the eigenvalue solver. Three calculation parts in OpenMX are mainly time-consuming:

Evaluation of Hamiltonian matrix elements
Solution of Poisson's equation
Diagonalization of the generalized secular equation
For the first and second parts, the computational time always scales as O(N) and O(Nlog(N)) for any eigenvalue solver, where N is the number of atoms, basis functions, or grid points. When the conventional diagonalization scheme (cluster and band methods) is used, the computational time for the third part scales as O(N). On the other hand, the O(N) methods can solve the eigenvalue problem in O(N) operation in exchange for accuracy. For large scale calculations parallel execution by MPI or OpenMX is supported for parallel machines. The hybrid parallelization by OpenMP/MPI is also supported which is suitable for PC cluster consisting of multicore processors. All work arrays in the program codes are dynamically allocated with the minimum memory size required by an input file. The execution environment is unix and linux. For the execution of OpenMX, you are required to possess pseudo-atomic basis orbitals and pseudopotentials. These input data can be calculated using ADPACK which is a program package for atomic density functional calculations. Conveniently, the data for several elements and ADPACK are available from a web site (http://www.openmx-square.org/). We are continuously working toward development. Motivated contributors who want to develop the open source codes are welcome. If so, the contact information is available in the above website.
…………
3楼2009-10-16 21:35:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

wuli8

荣誉版主 (知名作家)

…………

优秀版主优秀版主


fegg7502(金币+1,VIP+0):thank you very much! 10-17 17:46
Anisotropic exchange interactions of spin-orbit-integrated states in Sr2IrO4
H. Jin, H. Jeong, T. Ozaki, and J. Yu, Phys. Rev. B 80, 075112 (5 pages) (2009).


Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions
H. Weng, T. Ozaki, and K. Terakura, Phys. Rev. B 79, 235118 (8 pages) (2009).


Graphene nanoribbon array in a cellular automata architecture for propagation of binary information
A. Leon, Z. Barticevic, and M. Pacheco, Appl. Phys. Lett. 94, 173111 (3 pages) (2009).


Competition between structural distortion and magnetic moment formation in fullerene C20
M. J. Han, G. Kim, J.-I. Lee, and J. Yu, J. Chem. Phys. 130, 184107 (2009).


Band Structures of Narrow Zigzag Silicon Carbon Nanoribbons
P. Lou and J.Y. Lee, J. Phys. Chem. C 113, 12637 (4 pages) (2009).


Frustrated magnetic interactions, giant magneto-elastic coupling, and magnetic phonons in iron-pnictides
T. Yildirim, Physica C 469, 425 (17 pages) (2009).


Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives
M. Toyoda and T. Ozaki, J. Chem. Phys. 130, 124114 (7 pages) (2009).


Substrate-mediated interactions of Pt atoms adsorbed on single-wall carbon nanotubes: Density functional calculations
H.C. Dam, N.T. Cuong, A. Sugiyama, T. Ozaki, A. Fujiwara, T. Mitani, and S. Okada, Phys. Rev. B 79, 115426 (6 pages) (2009).


Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films
Y. S. Kim, J. Kim, S. J. Moon, W. S. Choi, Y. J. Chang, J.-G. Yoon, J. Yu, J.-S. Chung, and T. W. Noh, Appl. Phys. Lett. 94, 202906 (3 pages) (2009).


Calculation of electronic structures and magnetic moments of Nd2Fe14B and Dy2Fe14B by using linear-combination-of-pseudo-atomic-orbital method
I. Kitagawa, J. Appl. Phys. 105, 07E502 (3 pages) (2009).


Equilibrium structure of delta-Bi2O3 from first principles
D. Music, S. Konstantinidis, and J. M. Schneider, J. Phys.: Condens. Matter 21, 175403 (7 pages) (2009).


Carrier-induced noncollinear magnetism in perovskite manganites by first-principles calculations
K. Sawada and F. Ishii, J. Phys.: Condens. Matter 21, 064246 (4 pages) (2009).


Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes
S.M. Kim, J.H. Jang, K.K. Kim, H.K. Park, J.J. Bae, W.J. Yu, Il Ha Lee, G. Kim, D.D. Loc, U.J. Kim, E.-H. Lee, H.-J. Shin, J.-Y. Choi, and Y.H. Lee, J. Am. Chem. Soc. 131, 327 (5 pages) (2009).


Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism
K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Nano Lett. 9, 269 (4 pages) (2009).
…………
4楼2009-10-16 21:37:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见