| 查看: 3812 | 回复: 19 | |||
| 当前主题已经存档。 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
【分享】DFT计算软件OPENMX
|
|||
| 日本研究者开发的DFT计算软件,GNU开源软件,更新的比较快,现在是3.5版本。http://www.openmx-square.org/ |
» 猜你喜欢
拟解决的关键科学问题还要不要写
已经有11人回复
救命帖
已经有5人回复
限项规定
已经有5人回复
为什么nbs上溴 没有产物点出现呢
已经有9人回复
招博士
已经有3人回复
存款400万可以在学校里躺平吗
已经有35人回复
最失望的一年
已经有18人回复
求推荐博导
已经有4人回复
求推荐英文EI期刊
已经有5人回复
疑惑?
已经有5人回复
xirainbow
木虫 (正式写手)
- 1ST强帖: 2
- 应助: 0 (幼儿园)
- 贵宾: 0.03
- 金币: 2132.6
- 红花: 2
- 帖子: 775
- 在线: 6.1小时
- 虫号: 431211
- 注册: 2007-08-11
- 专业: 光谱学
15楼2009-10-17 11:15:24
aylayl08
荣誉版主 (文坛精英)
至尊天蝎
- 1ST强帖: 1
- 应助: 3 (幼儿园)
- 贵宾: 4.825
- 金币: 18823.7
- 散金: 2180
- 红花: 34
- 沙发: 48
- 帖子: 16357
- 在线: 824小时
- 虫号: 533169
- 注册: 2008-03-26
- 专业: 无机非金属基复合材料
- 管辖: 量子化学

2楼2009-10-16 21:31:42
wuli8
荣誉版主 (知名作家)
…………
- 1ST强帖: 2
- 应助: 35 (小学生)
- 贵宾: 12.924
- 金币: 20188.4
- 散金: 15888
- 红花: 88
- 沙发: 4
- 帖子: 7840
- 在线: 1114.6小时
- 虫号: 465889
- 注册: 2007-11-23
- 专业: 物理学I
- 管辖: 计算模拟
★ ★ ★
小木虫(金币+0.5):给个红包,谢谢回帖交流
aylayl08(金币+2,VIP+0):谢谢介绍OpenMX 10-16 21:44
小木虫(金币+0.5):给个红包,谢谢回帖交流
aylayl08(金币+2,VIP+0):谢谢介绍OpenMX 10-16 21:44
|
What is OpenMX? OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material simulations based on density functional theories (DFT) [1], norm-conserving pseudopotentials [2,20,21], and pseudo-atomic localized basis functions [23]. Since the code is designed for the realization of large-scale ab initio calculations on parallel computers, it is anticipated that OpenMX can be a useful and powerful tool for nano-scale material sciences in a wide variety of systems such as bio-materials, carbon nanotubes, magnetic materials, and nanoscale conductors. The distribution of the program package and the source codes follow the practice of the GNU General Public License (GPL) [47], and they are downloadable from http:http://www.openmx-square.org/ Features and capabilities of OpenMX Ver. 3.5 are as follows: Total energy and forces by cluster, band, and O(N) methods Local density approximation (LDA, LSDA) [2,3,4] and generalized gradient approximation (GGA) [5] to the exchange-correlation potential Norm-conserving pseudopotentials [2,20,21] Variationally optimized pseudo-atomic basis functions [23] Fully and scalar relativistic treatment within pseudopotential scheme [10,19,13] Non-collinear DFT [6,7,8,9] Constraint DFT for non-collinear spin and orbital orientation [11] Collinear LDA+U and non-collinear LDA+U methods [16] Macroscopic polarization by Berry's phase [12] Divide-conquer (DC) method [28], generalized DC method, and Krylov subspace method for O(N) eigenvalue solver Simple, RMM-DIIS [31], GR-Pulay [30], Kerker [32], and RMM-DIIS with Kerker's metric [31] charge mixing schemes Exchange coupling parameter [14,15] Optical conductivity Charge doping Uniform electric field Full and constrained geometry optimization Electric transport calculation by a non-equilibrium Green's function method Construction of maximally localized wannier functions NVE ensemble molecular dynamics NVT ensemble molecular dynamics by a velocity scaling [17] and the Nose-Hoover methods [18] Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities Analysis of wave functions and electron (spin) densities Dispersion analysis by the band calculation Density of states (DOS) and projected DOS Flexible data format for the input Completely dynamic memory allocation Parallel execution by Message Passing Interface (MPI) Parallel execution by OpenMP Useful user interface for developers Evaluation of two-center integrals using Fourier transformation [27] Evaluation of three-center integrals by a projector expansion method [24] Solution of Poisson's equation using FFT [26] Considerable functionalities are available for calculations of physical properties such as magnetic, dielectric, electric transport properties as listed above. Not only conventional diagonalization schemes are provided for clusters, molecules, slab, and solids, but also linear scaling methods are supported as the eigenvalue solver. Three calculation parts in OpenMX are mainly time-consuming: Evaluation of Hamiltonian matrix elements Solution of Poisson's equation Diagonalization of the generalized secular equation For the first and second parts, the computational time always scales as O(N) and O(Nlog(N)) for any eigenvalue solver, where N is the number of atoms, basis functions, or grid points. When the conventional diagonalization scheme (cluster and band methods) is used, the computational time for the third part scales as O(N). On the other hand, the O(N) methods can solve the eigenvalue problem in O(N) operation in exchange for accuracy. For large scale calculations parallel execution by MPI or OpenMX is supported for parallel machines. The hybrid parallelization by OpenMP/MPI is also supported which is suitable for PC cluster consisting of multicore processors. All work arrays in the program codes are dynamically allocated with the minimum memory size required by an input file. The execution environment is unix and linux. For the execution of OpenMX, you are required to possess pseudo-atomic basis orbitals and pseudopotentials. These input data can be calculated using ADPACK which is a program package for atomic density functional calculations. Conveniently, the data for several elements and ADPACK are available from a web site (http://www.openmx-square.org/). We are continuously working toward development. Motivated contributors who want to develop the open source codes are welcome. If so, the contact information is available in the above website. |

3楼2009-10-16 21:35:37
wuli8
荣誉版主 (知名作家)
…………
- 1ST强帖: 2
- 应助: 35 (小学生)
- 贵宾: 12.924
- 金币: 20188.4
- 散金: 15888
- 红花: 88
- 沙发: 4
- 帖子: 7840
- 在线: 1114.6小时
- 虫号: 465889
- 注册: 2007-11-23
- 专业: 物理学I
- 管辖: 计算模拟
★
fegg7502(金币+1,VIP+0):thank you very much! 10-17 17:46
fegg7502(金币+1,VIP+0):thank you very much! 10-17 17:46
|
Anisotropic exchange interactions of spin-orbit-integrated states in Sr2IrO4 H. Jin, H. Jeong, T. Ozaki, and J. Yu, Phys. Rev. B 80, 075112 (5 pages) (2009). Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions H. Weng, T. Ozaki, and K. Terakura, Phys. Rev. B 79, 235118 (8 pages) (2009). Graphene nanoribbon array in a cellular automata architecture for propagation of binary information A. Leon, Z. Barticevic, and M. Pacheco, Appl. Phys. Lett. 94, 173111 (3 pages) (2009). Competition between structural distortion and magnetic moment formation in fullerene C20 M. J. Han, G. Kim, J.-I. Lee, and J. Yu, J. Chem. Phys. 130, 184107 (2009). Band Structures of Narrow Zigzag Silicon Carbon Nanoribbons P. Lou and J.Y. Lee, J. Phys. Chem. C 113, 12637 (4 pages) (2009). Frustrated magnetic interactions, giant magneto-elastic coupling, and magnetic phonons in iron-pnictides T. Yildirim, Physica C 469, 425 (17 pages) (2009). Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives M. Toyoda and T. Ozaki, J. Chem. Phys. 130, 124114 (7 pages) (2009). Substrate-mediated interactions of Pt atoms adsorbed on single-wall carbon nanotubes: Density functional calculations H.C. Dam, N.T. Cuong, A. Sugiyama, T. Ozaki, A. Fujiwara, T. Mitani, and S. Okada, Phys. Rev. B 79, 115426 (6 pages) (2009). Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films Y. S. Kim, J. Kim, S. J. Moon, W. S. Choi, Y. J. Chang, J.-G. Yoon, J. Yu, J.-S. Chung, and T. W. Noh, Appl. Phys. Lett. 94, 202906 (3 pages) (2009). Calculation of electronic structures and magnetic moments of Nd2Fe14B and Dy2Fe14B by using linear-combination-of-pseudo-atomic-orbital method I. Kitagawa, J. Appl. Phys. 105, 07E502 (3 pages) (2009). Equilibrium structure of delta-Bi2O3 from first principles D. Music, S. Konstantinidis, and J. M. Schneider, J. Phys.: Condens. Matter 21, 175403 (7 pages) (2009). Carrier-induced noncollinear magnetism in perovskite manganites by first-principles calculations K. Sawada and F. Ishii, J. Phys.: Condens. Matter 21, 064246 (4 pages) (2009). Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes S.M. Kim, J.H. Jang, K.K. Kim, H.K. Park, J.J. Bae, W.J. Yu, Il Ha Lee, G. Kim, D.D. Loc, U.J. Kim, E.-H. Lee, H.-J. Shin, J.-Y. Choi, and Y.H. Lee, J. Am. Chem. Soc. 131, 327 (5 pages) (2009). Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Nano Lett. 9, 269 (4 pages) (2009). |

4楼2009-10-16 21:37:40













回复此楼