| 查看: 427 | 回复: 0 | |||
[交流]
特刊征稿 - Software-Driven Federated Learning for/in Smart Environment
|
|
Future Internet 特刊征稿 - Software-Driven Federated Learning for/in Smart Environment 详见 https://www.mdpi.com/journal/fut ... l_issues/76SC823DUX 特刊征稿内容: Since the term “smart environment” was coined in the late 1980s, there has been an increase in the amount of interest and effort in various smart environmental scenarios. For example, the early definition of smart homes derived from home automation terminology in 1992, while the term smart city emerged in the literature in 1998 and derived from urban simulations and different knowledge bases. Nowadays, along with the evolution of technology, the Internet of Things (IoT) and machine learning (ML) increasingly play a crucial and combined role in achieving all kinds of data-centric smart environments. However, such enabling technologies also bring challenges to smart environments involved in large-scale data collection, analysis, and decision-making processes. Three typical challenges are as follows: - Individual IoT devices generally have limited computation, storage, and network capabilities (e.g., the embedded RAM has only 4 KB in the current taxi-mounted GPS devices). Consequently, the heavy computation overhead makes conventional ML techniques impractical due to the resource constraints of IoT devices. - An IoT system may involve the non-scalable integration of heterogeneous technologies produced by different manufacturers; thus, there is not a one-size-fits-all solution for ML implementations in smart environments. - The distributed, diverse, and uncertain end-user situations of an IoT system would face more data privacy, security, and ethical risks from nefarious attacks within smart environments. To address these challenges, following the software-driven trend in making computing environments programmable and software defined, smart environments should also pay more attention to software with significant heterogeneity and diversity in IoT technologies. In fact, despite the widely recognised and possibly overemphasised aspects of hardware, it is software that eventually makes an environment smart. Inspired by the well-known “mind/brain” metaphor, users essentially rely on software applications to communicate and work with smart devices and objects around them. By considering the privacy-friendly paradigm of federated learning, we propose this Special Issue on Software-driven Federated Learning for/in Smart Environments. This Special Issue aims to bring together professionals from academia and industry to explore the latest experiences, advancements, challenges, methods, techniques, and solutions related to the engineering of federated learning systems for/in smart environments. Thus, we invite researchers, practitioners, and industry experts to submit their original contributions that cover the conjoint area of software engineering, federated learning, and smart environments, including, but not limited to, the following:
|
» 猜你喜欢
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有7人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有8人回复
申请2026年博士
已经有6人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复













回复此楼