| 查看: 600 | 回复: 3 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 yaoshunbo 的 7 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
欢迎引用
|
|||
|
摘要:Hybrid electric vehicles can achieve better fuel economy than conventional vehicles by utilizing multiple power sources. While these power sources have been controlled by rule-based or optimization-based control algorithms, recent studies have shown that machine learning-based con trol algorithms such as online Deep Reinforcement Learning (DRL) can effectively control the power sources as well. However, the optimization and training processes for the online DRL-based pow ertrain control strategy can be very time and resource intensive. In this paper, a new offline–online hybrid DRL strategy is presented where offline vehicle data are exploited to build an initial model and an online learning algorithm explores a new control policy to further improve the fuel economy. In this manner, it is expected that the agent can learn an environment consisting of the vehicle dynamics in a given driving condition more quickly compared to the online algorithms, which learn the optimal control policy by interacting with the vehicle model from zero initial knowledge. By incorporating a priori offline knowledge, the simulation results show that the proposed approach not only accelerates the learning process and makes the learning process more stable, but also leads to a better fuel economy compared to online only learning algorithms. 论文:With the advancements of data science, machine learning has become a vital tool for improving decision making by using raw data and information as input. Significant results can be seen by using different machine learning techniques in various real-world domains, such as cybersecurity systems, engineering, healthcare, e-commerce, agriculture, etc. [1] [1] Yao, Z.; Yoon, H.-S.; Hong, Y.-K. Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning. Energies 2023, 16, 652. https://doi.org/10.3390/en16020652 |
» 猜你喜欢
青椒八年已不青,大家都被折磨成啥样了?
已经有17人回复
免疫学博士有名额,速联系
已经有12人回复
面上基金申报没有其他的参与者成吗
已经有4人回复
退学或坚持读
已经有16人回复
国家基金申请书模板内插入图片不可调整大小?
已经有8人回复
多组分精馏求助
已经有6人回复
国家级人才课题组招收2026年入学博士
已经有6人回复
» 抢金币啦!回帖就可以得到:
多功能 电子微生物生长分析仪 及 微生物快检技术开发服务
+2/192
中国海洋大学与中国水产科学研究院 联合培养 专硕 食品加工与安全
+1/92
结构动力学与结构健康监测方向欧盟玛丽居里全奖博士招聘
+1/84
博后平台选择
+1/73
娃娃们今儿考试喽。。。。
+1/63
香港科技大学计算物理及流体力学课题组招收全奖博士后及博士生(2026年9月入学)
+1/47
江西理工大学 稀土学院 稀土功能材料方向 招收2026届博士研究生、硕士研究生
+1/36
山东科技大学招聘化学化工博士博士后
+1/33
教育部重点实验室和清华大学某国家重点实验室,联合培养硕生、博生,并长期招博士后
+1/30
意大利米兰理工大学急聘CSC公派留学博士生(物理或无机材料科学方向)
+2/28
海南大学化学院—功能分子器件团队2026博士/研究助理招生+博士后招聘
+1/20
太原理工大学集成电路学院院长团队招收2026年博士研究生
+1/10
【博士招生】哈工大(深圳)智能学部机器人与先进制造学院 陆文杰老师课题组
+1/10
2026年天津大学杰青团队招收化学合成、计算机和器件的方面博士
+1/8
邵阳学院食品与化学工程学院硕士调剂
+1/6
双一流联合团队招聘团队青年人才与博后
+1/5
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/4
顾敏院士课题组招收2026级光学工程专业博士研究生-上海理工大学智能科技学院
+1/3
海南大学国家优青团队招聘“AI/大数据+材料”方向师资博后
+1/2
澳科大诚招2026年秋季生物材料全奖博士研究生(今日16:30线上宣讲会)
+1/1
简单回复
newind2楼
2023-02-28 14:53
回复
yaoshunbo(金币+1): 谢谢参与
哦 发自小木虫Android客户端
tzynew3楼
2023-02-28 21:46
回复
yaoshunbo(金币+1): 谢谢参与
2023-02-28 21:54
回复
yaoshunbo(金币+1): 谢谢参与













回复此楼