| 查看: 1689 | 回复: 21 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 giannilin 的 8 个金币 ,回帖就立即获得 2 个金币,每人有 1 次机会 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
【2022-10-24】【Scopus WoS】第三十八届 ACM Symposium on Applied Computing - GMLR
|
|||
|
截稿日期延长 会议城市 爱沙尼亚,塔林 收录 scopus,acm,wos 收录 截稿日期 已延长至2022年10月24日 https://phuselab.di.unimi.it/gmlr2023 2023年第三十八届 acm symposium on applied computing (sac 2023) graph models for learning and recognition (gmlr) track 将于2023年3月27日至4月2日在爱沙尼亚共和国塔林市召开。 会议主题 the acm symposium on applied computing (sac 2023) has been a primary gathering forum for applied computer scientists, computer engineers, software engineers, and application developers from around the world. sac 2023 is sponsored by the acm special interest group on applied computing (sigapp), and will be held in tallinn, estonia. the technical track on graph models for learning and recognition (gmlr) is the second edition and is organized within sac 2023. graphs have gained a lot of attention in the pattern recognition community thanks to their ability to encode both topological and semantic information. despite their invaluable descriptive power, their arbitrarily complex structured nature poses serious challenges when they are involved in learning systems. some (but not all) of challenging concerns are: a non-unique representation of data, heterogeneous attributes (symbolic, numeric, etc.), and so on. in recent years, due to their widespread applications, graph-based learning algorithms have gained much research interest. encouraged by the success of cnns, a wide variety of methods have redefined the notion of convolution and related operations on graphs. these new approaches have in general enabled effective training and achieved in many cases better performances than competitors, though at the detriment of computational costs. typical examples of applications dealing with graph-based representation are: scene graph generation, point clouds classification, and action recognition in computer vision; text classification, inter-relations of documents or words to infer document labels in natural language processing; forecasting traffic speed, volume or the density of roads in traffic networks, whereas in chemistry researchers apply graph-based algorithms to study the graph structure of molecules/compounds. this track intends to focus on all aspects of graph-based representations and models for learning and recognition tasks. gmlr spans, but is not limited to, the following topics: ● graph neural networks: theory and applications ● deep learning on graphs ● graph or knowledge representational learning ● graphs in pattern recognition ● graph databases and linked data in ai ● benchmarks for gnn ● dynamic, spatial and temporal graphs ● graph methods in computer vision ● human behavior and scene understanding ● social networks analysis ● data fusion methods in gnn ● efficient and parallel computation for graph learning algorithms ● reasoning over knowledge-graphs ● interactivity, explainability and trust in graph-based learning ● probabilistic graphical models ● biomedical data analytics on graphs the track committee is working to organize a journal special issue, to which the authors of selected top papers of this track will be invited for an extended version. 程序委员会主席 donatello conte (university of tours) alessandro d'amelio (university of milan) giuliano grossi (university of milan) raffaella lanzarotti (university of milan) jianyi lin (università cattolica del sacro cuore) 程序委员 ● annalisa barla (university of genoa) ● davide boscaini (bruno kessler foundation) ● antonella carbonaro (university of bologna) ● vittorio cuculo (university of milan) ● samuel feng (sorbonne university abu dhabi) ● gabriele gianini (university of milan) ● andreas henschel (khalifa university) ● francesco isgrò (university of naples) ● giosuè lo bosco (university of palermo) ● alessio micheli (university of pisa) ● carlos oliver (eth zürich) ● maurice pagnucco (university of new south wales) ● jean-yves ramel (university of tours) ● ryan a. rossi (adobe research) (others to be confirmed) 征文要求 邀请作者提交未发表的原创研究论文和应用论文。论文正文不能包含作者姓名或地址,以便于双盲审查。投稿撰写论文必需是英语。 需要了解提交程序的更多信息,请查询会议网站。 sac报告缺席政策:录用并完成注册的全文和张贴将收录到会议论文集。如果本人无法参加,需请其他同事代做报告,否则全文不能被收入acm数字图书馆。 主要日期 论文全文截稿期已延长至 :2022年10月24日 录用通知期 :2022年12月5日 录用论文camera-ready (终稿版)提交日期: 2022年12月13日 sac大会日期: 2023年3月27日至4月2日 论文投稿网站: https://www.sigapp.org/sac/sac2023/submission.html 征文启事pdf英文版: https://tiny.cc/gmlr2023-cfp [ last edited by giannilin on 2022-10-13 at 20:05 ] 截稿日期延长至2022年10月24日 [ last edited by giannilin on 2022-10-24 at 06:18 ] <color=red>截稿日期延长至2022年10月31日</color> [ Last edited by giannilin on 2022-10-25 at 00:43 ] |
» 猜你喜欢
要不要辞职读博?
已经有6人回复
实验室接单子
已经有3人回复
不自信的我
已经有10人回复
磺酰氟产物,毕不了业了!
已经有8人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有10人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有26人回复
2026年机械制造与材料应用国际会议 (ICMMMA 2026)
已经有4人回复
Cas 72-43-5需要30g,定制合成,能接单的留言
已经有8人回复
北京211副教授,35岁,想重新出发,去国外做博后,怎么样?
已经有8人回复
» 抢金币啦!回帖就可以得到:
坐标济南,来碰碰运气
+1/450
科瑞赛生物内皮细胞培养基试用装限时大放送,助力你的实验高效进阶!
+1/84
南京理工大学曾海波/李伟金 招聘博士后(电磁响应:介电调控等方向)
+1/79
澳门大学智慧城市物联网国重“结构智能感知、健康监测与无损检测”研究方向博士后招聘
+1/75
中科院长春光机所 招收计算材料学博士/硕士研究生(含机器学习辅助材料设计方向)
+1/73
希望你在这里
+1/62
考核制博士自荐
+1/38
北京化工大学化学工程学院杨琪教授 邱介山教授,招收储能电池方向博士研究生
+1/35
西北工业大学无人飞行器技术全国重点实验室拟招收电机/自动化方向博士1~2名
+1/30
SCI,计算机相关可以写
+1/23
SCI,计算机相关可以写
+1/22
SCI,计算机相关可以写
+1/21
SCI,计算机相关可以写
+1/19
SCI,计算机相关可以写
+1/18
SCI,计算机相关可以写
+1/14
2026年黄河科技学院纳米功能材料研究所招聘
+2/8
长江学者团队招聘药学/生物信息学等方向高校教师7名(地点杭州、有事业编)+博后5名
+1/8
中科院深圳理工大学网络课题组招聘博后/RA/实习生
+1/7
代算!材料学理论计算
+1/3
中国科学院苏州纳米所院士团队博士后岗位招聘
+1/1
6楼2022-08-23 22:57:20
chenhuanlong
禁虫 (文学泰斗)
★
giannilin(金币+2): 谢谢参与
giannilin(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
9楼2022-10-03 20:31:03
14楼2022-10-21 09:44:17
简单回复
XG-WUST10楼
2022-10-03 20:34
回复
up 发自小木虫IOS客户端
XG-WUST11楼
2022-10-05 22:04
回复
giannilin(金币+2): 谢谢参与
up 发自小木虫IOS客户端
一品哥哥4楼
2022-08-23 22:36
回复
giannilin(金币+1): 谢谢参与
, 发自小木虫Android客户端
ericamy5楼
2022-08-23 22:55
回复
LCL499812楼
2022-10-05 22:41
回复
bjdxyxy3楼
2022-08-23 22:32
回复
giannilin(金币+1): 谢谢参与
。 发自小木虫Android客户端
2022-09-23 12:17
回复
2022-10-03 19:12
回复












回复此楼