| 查看: 255 | 回复: 0 | |||
| 当前主题已经存档。 | |||
hjhw9513木虫 (著名写手)
|
[交流]
美国物理学家发明神奇物质
|
||
已搜索,无重复!来自科研中国。![]() Image: Comparison of granular jets at atmospheric pressure and in a vacuum. A-C show images from a high-speed video of a granular jet produced by the impact of a heavy sphere at atmospheric pressure. D-F show images form a high-speed video of the jet at reduced pressure. Air compressed between the sand grains provides most of the energy that drives the jet, according to scientists at the University of Chicago. Images courtesy of Heinrich Jaeger, University of Chicago We're discovering a new type of fluid state that seems to exist in this combination of gas--air in this case--and a dense arrangement of particles," said Heinrich Jaeger, Professor in Physics and Director of the Materials Research Science and Engineering Center at the University of Chicago. "It's just a most amazing phenomenon." Jaeger's team describes the surprising phenomenon in the December issue of the journal Nature Physics. The team consists of graduate students John Royer and Eric Corwin; 2003 University of Chicago physics graduate Andrew Flior; visiting physics graduate student Maria-Luisa Cordero from the Universidad de Chile; Peter Eng, a Senior Research Associate at the University's James Franck Institute; and Mark Rivers, Associate Director of the University's Consortium for Advanced Radiation Sources. Scientists typically have produced new states of matter at ultra-cold temperatures, those nearing absolute zero (minus 497.6 degrees Fahrenheit). In this case, granular materials take on unusual characteristics at room temperature. "The jet acts like an ultra-cold, ultra-dense gas, not in terms of ambient temperature, but in terms of how we define temperature via the random motion of particles. Inside the jet there is very, very little random motion," Jaeger said. The jetting phenomenon was first reported in 2001 by Sigurdur Thoroddsen and Amy Shen, who were then at the University of Illinois at Urbana-Champaign. Studying the way the characteristics of granular materials changes from solid to fluid has long been a research theme at Chicago's Center for Materials Research. Thoroddsen and Shen's work led Jaeger to suggest that Floir reproduce the experiment as the subject of his undergraduate honors thesis. Meanwhile, a group led by Detlef Lohse at the University of Twente in the Netherlands used high-speed video and computer simulations to infer how the jet was caused by gravity as material rushed in to fill the void left behind by the impacting object. 全文见:http://www.physorg.com/news8765.html [ Last edited by hjhw9513 on 2005-12-7 at 17:15 ] |
» 猜你喜欢
拟解决的关键科学问题还要不要写
已经有7人回复
请教限项目规定
已经有3人回复
存款400万可以在学校里躺平吗
已经有15人回复
Materials Today Chemistry审稿周期
已经有6人回复
基金委咋了?2026年的指南还没有出来?
已经有10人回复
基金申报
已经有6人回复
推荐一本书
已经有13人回复
国自然申请面上模板最新2026版出了吗?
已经有17人回复
纳米粒子粒径的测量
已经有8人回复
疑惑?
已经有5人回复












回复此楼