| ²é¿´: 1180 | »Ø¸´: 4 | ||
×ÔÖÆÄÌÀÒͳæ (СÓÐÃûÆø)
|
[ÇóÖú]
ÓÃmatlabÇó¶¯Á¦Ñ§²ÎÊý ÒÑÓÐ2È˲ÎÓë
|
|
ÎÒ²»ÖªµÀMATLABÔõôÊäÈëÇó¶¯Á¦Ñ§º¯ÊýµÄ·½³Ì£¬³ÁËľ³æ´óÀеÄÄÚÈÝ£¬Çë´ó¼Ò°ïÎÒ°ÑËüŪµ½ÄÜÔËÐгöÀ´£¬¶¯Á¦Ñ§²ÎÊýÄâºÏÎÊÌ⣬ÇóÖú´ó¼Ò~~~ function odes_fit format long clear all clc k0=[0 0 0 0 0 0 0 0];%²ÎÊý³õÖµ lb=[0 0 0 0 0 0 0 0];ub=[+inf +inf +inf +inf +inf +inf +inf +inf];%lb¡¢ub:²ÎÊýÏÂÏÞºÍÉÏÏÞ x0=[0 0 0 0 0]; data=... [0.5 1 1.5 2 3 4 5 6 18.7 6.5 2.7 2.1 1.7 1.5 1.2 0.2; 48.9 31.3 15.3 6.9 2.2 1.8 1.7 0.5; 19.3 34.7 41.2 40.9 37.2 31.7 26.1 19.4; 9.7 19.6 28.7 34.5 38.4 38.2 36.3 33.4; 0.2 2.6 5.7 9.3 17.1 24.8 30.5 36.7; ]; x0=data(1,2:end); tspan = [data(:,1)']; yexp = [data(2:end,2) data(2:end,3) data(2:end,4) data(2:end,5) data(2:end,6) data(2:end,7) data(2:end,8)]; %ʹÓú¯Êýfmincon()½øÐвÎÊý¹À¼Æ [k,fval,flag]=fmincon(@ObjFunc4Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp); fprintf('\n\nʹÓú¯Êýlsqnonlin()¹À¼ÆµÃµ½µÄ²ÎÊýֵΪ:\n') fprintf('\tk1 = %.9f \n',k(1)) fprintf('\tk2 = %.9f \n',k(2)) fprintf('\tk3 = %.9f \n',k(3)) fprintf('\tk4 = %.9f \n',k(4)) fprintf('\tk5 = %.9f \n',k(5)) fprintf('\tk6 = %.9f \n',k(6)) fprintf('The sum of the squares is:%.le\n\n',fval) k_fmincon=k; %ʹÓú¯Êýlsqnonlin()½øÐвÎÊý¹À¼Æ [k,resnorm,residual,exitflag,output,lambda,jacobian]=... lsqnonlin(@ObjFunc4LNL,k0,lb,ub,[],x0,yexp); ci=nlparci(k,residual,jacobian); fprintf('\n\nʹÓú¯Êýlsqnonlin()¹À¼ÆµÃµ½µÄ²ÎÊýÖµ:\n'),output %ÒÔº¯Êýfmincon()¹À¼ÆµÃµ½µÄ½á¹ûΪ³õÖµ£¬Ê¹Óú¯Êýlsqnonlin()½øÐвÎÊý¹À¼Æ k0=k_fmincon; [k,resnorm,residual,exitflag,output,lambda,jacobian]=lsqnonlin(@ObjFunc4LNL,k0,lb,ub,[],x0,yexp); ci=nlparci(k,residual,jacobian); fprintf('\n\nÒÔfmincon()µÄ½á¹ûΪ³õÖµ£¬Ê¹Óú¯Êýlsqnonlin()¹À¼ÆµÃµ½µÄ²ÎÊýÖµ:\n') output figure(1) ts=0 (max(tspan)-min(tspan))/100):max(tspan);[ts, ys] = ode45(@KineticsEqs,ts,x0,[],k); yy = [data(:,2) data(:,3) data(:,4) data(:,5) data(:,6)]; figure(1) plot(ts,ys(:,1),'b',tspan,yy(:,1),'bo'); figure(2) plot(ts,ys(:,2),'r',tspan,yy(:,2),'ro'); figure(3) plot(ts,ys(:,3),'k',tspan,yy(:,3),'ko'); figure(4) plot(ts,ys(:,4),'g',tspan,yy(:,4),'ko'); figure(5) plot(ts,ys(:,4),'g',tspan,yy(:,4),'ko'); figure(6) plot(ts,ys(:,6),'m',tspan,yy(:,6),'mo'); %legend('C1µÄ¼ÆËãÖµ','C1µÄʵÑéÖµ','C2µÄ¼ÆËãÖµ','C2µÄʵÑéÖµ','C3µÄ¼ÆËãÖµ','C3µÄʵÑéÖµ','C4µÄ¼ÆËãÖµ','C4µÄʵÑéÖµ','C5µÄ¼ÆËãÖµ','C5µÄʵÑéÖµ','C6µÄ¼ÆËãÖµ','Location','best'); function f = ObjFunc(k,tspan,x0,yexp) % Ä¿±êº¯Êý [t, Xsim] = ode45(@KineticsEqs,tspan,x0,[],k); Xsim1=Xsim(:,1); Xsim2=Xsim(:,2); Xsim3=Xsim(:,3); Xsim4=Xsim(:,4); Xsim5=Xsim(:,5); Xsim6=Xsim(:,6); ysim(:,1) = Xsim1(2:end); ysim(:,2) = Xsim2(2:end); ysim(:,3) = Xsim3(2:end); ysim(:,4) = Xsim4(2:end); ysim(:,5) = Xsim5(2:end); ysim(:,6) = Xsim6(2:end); f = [(ysim(:,1)-yexp(:,1)) (ysim(:,2)-yexp(:,2)) (ysim(:,3)-yexp(:,3)) (ysim(:,5)-yexp(:,5)) ... (ysim(:,6)-yexp(:,6))]; function dCdt = KineticsEqs(t,C,k) % ODEÄ£ÐÍ·½³Ì C1=C(1);C2=C(2);C3=C(3);C4=C(4);C5=C(5);C6=C(6); k1=k(1);k2=k(2);k3=k(3);k4=k(4);k5=k(5);k6=k(6);k7=k(7); dC1dt = -k1*C1-k7*C1; dC2dt = k1*C1-k2*C2-k5*C2; dC3dt = k2*C2-k3*C3-k6*C3; dC4dt = k3*C3-k4*C5; dC5dt = k4*C5; dC6dt = k5*C2+k6*C3+k7*C1; dCdt = [dC1dt;dC2dt;dC3dt;dC4dt;dC5dt;dC6dt]; @beefly |
» ²ÂÄãϲ»¶
»ùÓÚ»ùÔªIͳһÀíÂÛµÄÁ¿×ÓÁ¦Ñ§±¾Ô´ÍƵ¼
ÒѾÓÐ1È˻ظ´
ÍÆ¼öÒ»¿î¿ÉÒÔAI¸¨Öúд×÷µÄLatex±à¼Æ÷SmartLatexEditor£¬³¬¼¶ºÃÓã¬AIÈóÉ«£¬È«Ãâ·Ñ
ÒѾÓÐ20È˻ظ´
ÎïÀíѧIÂÛÎÄÈóÉ«/·ÒëÔõôÊÕ·Ñ?
ÒѾÓÐ121È˻ظ´
¡¾EI|Scopus Ë«¼ìË÷¡¿µÚÁù½ìÖÇÄÜ»úÆ÷ÈËϵͳ¹ú¼Ê»áÒ飨ISoIRS 2026£©
ÒѾÓÐ1È˻ظ´
2026ÄêµÚËĽìµç¶¯³µÓë³µÁ¾¹¤³Ì¹ú¼Ê»áÒ飨CEVVE 2026£©
ÒѾÓÐ0È˻ظ´

¶À¹ÂÉñÓî
°æÖ÷ (ÖªÃû×÷¼Ò)
- Ó¦Öú: 490 (˶ʿ)
- ¹ó±ö: 0.008
- ½ð±Ò: 31016.3
- É¢½ð: 802
- ºì»¨: 122
- ɳ·¢: 1
- Ìû×Ó: 5600
- ÔÚÏß: 856.5Сʱ
- ³æºÅ: 3522474
- ×¢²á: 2014-11-06
- ÐÔ±ð: GG
- רҵ: »úе¶¯Á¦Ñ§
- ¹ÜϽ: ¼ÆËãÄ£Äâ

2Â¥2021-01-05 21:03:26
×ÔÖÆÄÌÀÒ
ͳæ (СÓÐÃûÆø)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 3
- É¢½ð: 6
- Ìû×Ó: 106
- ÔÚÏß: 53.4Сʱ
- ³æºÅ: 3447629
- ×¢²á: 2014-09-28
- ÐÔ±ð: GG
- רҵ: ÂÌÉ«Óлú»¯Ñ§

3Â¥2021-01-05 21:07:08
dingd
Ìú¸Ëľ³æ (Ö°Òµ×÷¼Ò)
- ¼ÆËãÇ¿Ìû: 4
- Ó¦Öú: 1641 (½²Ê¦)
- ½ð±Ò: 15037.3
- É¢½ð: 101
- ºì»¨: 234
- Ìû×Ó: 3410
- ÔÚÏß: 1223.7Сʱ
- ³æºÅ: 291104
- ×¢²á: 2006-10-28
¡¾´ð°¸¡¿Ó¦Öú»ØÌû
¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
×ÔÖÆÄÌÀÒ: ½ð±Ò+20, ¡ïÓаïÖú 2021-01-05 21:39:36
¶À¹ÂÉñÓî: ½ð±Ò+5, ¹ÄÀø½»Á÷ 2021-01-06 17:08:32
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
×ÔÖÆÄÌÀÒ: ½ð±Ò+20, ¡ïÓаïÖú 2021-01-05 21:39:36
¶À¹ÂÉñÓî: ½ð±Ò+5, ¹ÄÀø½»Á÷ 2021-01-06 17:08:32
|
²Î¿¼ÏÂ1stOptµÄ¼ÆËã½á¹û£º Weighted Root of Mean Square Error (RMSE): 3.52215359203778 Weighted Sum of Squared Residual: 434.194807406662 Correlation Coef. (R): 0.967264353331916 R-Square: 0.935600329226609 Determination Coef. (DC): 0.698480780131114 F-Statistic: -0.866225958773538 Parameter Best Estimate -------------------- ------------- k1 1.18206935637483 k2 1.23804230026633 k3 0.392064236557302 k4 0.237399839174299 k5 2.4090372987211E-18 k6 1.44475738382174E-24 k7 0.719127412563461 f Initial Value 19.2237430015159 |
4Â¥2021-01-05 21:34:03
Á÷ÀËÔÚµØÇò
гæ (³õÈëÎÄ̳)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 80.8
- É¢½ð: 8
- Ìû×Ó: 33
- ÔÚÏß: 32·ÖÖÓ
- ³æºÅ: 29690859
- ×¢²á: 2022-06-09
- רҵ: ¶¯Á¦Ñ§Óë¿ØÖÆ
5Â¥2022-11-17 13:58:31













(max(tspan)-min(tspan))/100):max(tspan);
»Ø¸´´ËÂ¥
