24小时热门版块排行榜    

CyRhmU.jpeg
查看: 403  |  回复: 0
当前主题已经存档。

[资源] 【转帖】PWSCF计算H2的振动频率问题

PWSCF计算H2的振动频率问题zz(2009-05-12 22:15:22)标签:phonon dispersion   分类:第一性原理计算

   From the word go, I try to use MS to compute phonon dispersion of layered-material structure (graphene and graphane). Unfortunatelly, the low-wavenumber problem alway fructrates my hope. Just the other day, I found the following website. Maybe, they can give me some hope.



以下内容转载自http://valenhou.blog.edu.cn/2005/133236.html

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

http://www.democritos.it/pipermail/pw_forum/2005-June/002615.html


Dear PWscf devepolers and users,
    I am trying to get phonon frequencies of H2 molecule(gas phase) with PWSCF v.2.0.1.
    The results for H2 from PWSCF with all other parameters remanining same except different energy cutoffs are given below. I had done for dual= 4, 6 and 8, where "ecutrho= dual* ecutwfc".

Results- with box-size 20 bohr, relaxed atomic positions:
================================
        ATOMIC_POSITIONS (angstrom)
H        1.325979436   0.000000000   0.000000000
H        0.574020564   0.000000000   0.000000000

Phonon frequencies:
==================
A1.  ecutwfc = 25 Ry,  ecutrho = 100 Ry :

**************************************************************************
     omega( 1) =       2.829060 [THz] =      94.367920 [cm-1]
     omega( 2) =       2.829060 [THz] =      94.367920 [cm-1]
     omega( 3) =       3.861495 [THz] =     128.806463 [cm-1]
     omega( 4) =       4.643165 [THz] =     154.880338 [cm-1]
     omega( 5) =       4.643165 [THz] =     154.880338 [cm-1]
     omega( 6) =     129.812814 [THz] =    4330.118153 [cm-1]
**************************************************************************


A2.   ecutwfc = 25 Ry,  ecutrho = 150 Ry :

**************************************************************************
     omega( 1) =       2.153650 [THz] =      71.838519 [cm-1]
     omega( 2) =       2.153650 [THz] =      71.838519 [cm-1]
     omega( 3) =       4.145972 [THz] =     138.295665 [cm-1]
     omega( 4) =       4.145972 [THz] =     138.295665 [cm-1]
     omega( 5) =       4.817966 [THz] =     160.711103 [cm-1]
     omega( 6) =     129.800590 [THz] =    4329.710425 [cm-1]
**************************************************************************

A3.    ecutwfc = 25 Ry,  ecutrho = 200 Ry :

**************************************************************************
     omega( 1) =      -1.588702 [THz] =     -52.993762 [cm-1]
     omega( 2) =      -1.588702 [THz] =     -52.993762 [cm-1]
     omega( 3) =       3.878442 [THz] =     129.371746 [cm-1]
     omega( 4) =       4.580893 [THz] =     152.803167 [cm-1]
     omega( 5) =       4.580893 [THz] =     152.803167 [cm-1]
     omega( 6) =     129.718516 [THz] =    4326.972705 [cm-1]
**************************************************************************


Thus I got negative and positive non-zero frequencies, where I am
expecting 4 zero-frequencies, one frequency close to zero(due to bending)
and one frequency in the order of 4560cm-1.

Changing the atomic positions and with the same three dual values, the
frequencies and their sign vary. Results are given below-

Results- in box-size = 20 bohr, relaxed atomic positions:
================================
        ATOMIC_POSITIONS (angstrom)
H        0.000000000   0.000000000   0.000000000
H        0.434143657   0.434143657   0.434143657

Phonon frequencies:
==================
B1.  ecutwfc = 25 Ry,  ecutrho = 100 Ry :

**************************************************************************
     omega( 1) =      -4.811247 [THz] =    -160.486990 [cm-1]
     omega( 2) =      -4.811247 [THz] =    -160.486990 [cm-1]
     omega( 3) =      -2.203041 [THz] =     -73.486037 [cm-1]
     omega( 4) =       0.500005 [THz] =      16.678469 [cm-1]
     omega( 5) =       0.500005 [THz] =      16.678469 [cm-1]
     omega( 6) =     129.696261 [THz] =    4326.230348 [cm-1]
**************************************************************************


B2.

ecutwfc
=
25
Ry,

ecutrho
=
150
Ry
:

**************************************************************************
     omega( 1) =       2.357793 [THz] =      78.648043 [cm-1]
     omega( 2) =       2.357793 [THz] =      78.648043 [cm-1]
     omega( 3) =       2.816217 [THz] =      93.939507 [cm-1]
     omega( 4) =       2.816217 [THz] =      93.939507 [cm-1]
     omega( 5) =       4.476603 [THz] =     149.324395 [cm-1]
     omega( 6) =     129.796002 [THz] =    4329.557366 [cm-1]
**************************************************************************

B3.  ecutwfc = 25 Ry,  ecutrho = 200 Ry :

**************************************************************************
     omega( 1) =       2.005189 [THz] =      66.886334 [cm-1]
     omega( 2) =       2.005189 [THz] =      66.886334 [cm-1]
     omega( 3) =       3.773415 [THz] =     125.868397 [cm-1]
     omega( 4) =       4.558315 [THz] =     152.050044 [cm-1]
     omega( 5) =       4.558315 [THz] =     152.050044 [cm-1]
     omega( 6) =     129.748872 [THz] =    4327.985258 [cm-1]
**************************************************************************


         H2 molecule system is so simple and still phonon frequencies obtained are so off! Will you please help me to understand what is the origin of these non-zero(both negative and positive<200 cm-1 )frequencies? How should I get rid of them and have correct frequencies?

         Best regards,    mousumi.
———————————————————————————————————————————————

———————————————————————————————————————————————

The following is answer from expert of PWscf(编者暗).

——————————————————————————————————————————————————————————————————————————————————————————————

I think that there is nothing really wrong in the frequencies you get. The isolated molecule should have 1 non zero frequency, corresponding to the bond-stretching mode and 5 zero frequencies (3 due to global  translational symmetry and 2 due to rotational symmetry of a diatomic molecule).

In the periodic calculation you are performing the two rotational mode never really vanish due to weak interaction with the periodic images of the molecule.

The three translational modes would be zero for a perfect integration of the exchange-correlation energy on the real-space grid used to reperesent  the density.
This is never achieved in practice (except for exceedingly dense real space grids)

Thus some violation of the order of a few percent of the stiffer frequency is common expecially when using gradient corrected XC functionals and/or US pseudopotentials.

Your  calculation is reasonably accurate, I think, and the violation of  the zero-frequency
result that you correctly expect is maybe smaller than you think.


Think in terms of interatomic force constants:
omega_bend = sqrt (PHI/reduced_mass) where PHI is the on site force constant of Hydrogen(1) that by translational symmetry should be equal and opposite to the Hydorgen(1)-Hydrogen(2) interatomic force constant.
The fact that this sum rule (Acoustic Sum Rule says \sum_I PHI_{I\alpha,J\beta} = 0 for each J,\alpha,\beta) is violated gives a NON-ZERO translational frequency of the order of omega_trasl = sqrt(Delta PHI/ total_mass)

Therefore the relative error in the determination of the interatomic force constants in your calculation is of the order of
Delta PHI/PHI = (omega_trals/omega_bend)^2 *total_mass/reduced_mas =

                approx (150/4300)^2 *4 =

                 0.5 %

which is not that bad, although not wonderful.

Translational Acoustic Sum Rule can be enforced (with no noticable  effect on the real non-zero frequencies) in the auxiliary code dynmat.x that you can find in the pwtools subdirectory of the espresso distribution.

A more refined treatment of Translation and Rotational Acoustic Sum Rules can be enforced in the CVS version of the distribution (and in future web distributions) thanks to a contribution by Nicolas Mounet .

best regards,

Stefano de Gironcoli

Mousumi Upadhyay Kahaly wrote:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

以上内容来自我的博客;blog.sina.com.cn/nkasir
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 xirainbow 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见