24小时热门版块排行榜    

查看: 8027  |  回复: 107
【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 sig102657 的 786 个金币 ,回帖就立即获得 2 个金币,每人有 1 次机会
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

sig102657

新虫 (著名写手)


[交流] Call for Papers (Pattern Recognition Letters Special Issue on Deep Learning for

截稿日期:
2020年12月31号

Pattern Recognition Letters (Impact factor: 2.81) Call for Papers



Special Issue on



Deep Learning for Precise and Efficient Object Detection



Submission period: Dec. 1-31, 2020, First notification: Mar. 1,2021



https://www.journals.elsevier.co ... earning-for-precise



                         ===========================================================================

Aim and Scopes

Object detection is one of the most challenging and important tasks of computer vision and is widely used in applications such as autonomous vehicle, biometrics, video surveillance, and human-machine interactions. In the past five years, significant success has been achieved with the development of deep learning, especially deep convolutional neural networks. Typical categories of advanced object detection methods are one-stage, two-stage, and anchor-free methods. Nevertheless, the performance in accuracy and efficiency is far from satisfying. On the one hand, the average precision of state-of-the-art object detection methods is very low (e.g., merely about 40% on the COCO dataset). The performance is even worse for small and occluded objects. On the another hand, to obtain precision the detection speed is very low. It is challenging to get a satisfying trade-off between the detection precision and speed. Therefore, much efforts have to be engaged to remarkably improve the performance of object detection in both precision and efficiency.

This special issue will publish papers presenting state-of-the-art methods in dealing with the challenging problems of object detection within the framework of deep learning. We invite authors to submit manuscripts that are highly related to the topics of this special issue and which have not been published before. The topics of interest include, but are not limited to:

n Anchor and Anchor-free object detection

n Detecting small or occluded objects

n Context and attention mechanism for object detection

n Fast object detection algorithms

n New backbone for object detection

n Architecture search for object detection

n 3D object detection
       

n Object detection in challenging conditions

n Handling scale problems in object detection

n Improving localization accuracy

n Fusion of point cloud and images for object detection

n Relationship between object detection and other computer vision tasks.

n Large-scale datasets for object detection

Important Dates

Submission period: Dec. 1-31, 2020
       

First notification to authors: Mar. 1, 2021


Submission of revised papers: Apr. 15, 2021


Final notification to authors: June 15, 2021
       

Online publication: Jul. 1, 2021


Submission of Manuscripts

Prospective authors should write manuscripts according to the Guide for Authors of Pattern Recognition Letters available at the website https://ees.elsevier.com/prletters/. Please select as article type: VSI: DL4PEOD when submit manuscripts.

Guest Editors

Dr. Yanwei Pang, Tianjin University, China, pyw@tju.edu.cn

Dr. Jungong Han, Warwick University, U.K., jungong.han@warwick.ac.uk

Dr. Xin Lu, Adobe Inc., U.S.A., xinl@adobe.com

Dr. Nicola Conci, University of Trento, Italy, nicola.conci@unitn.it

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : PRL_CFP_SI_on_Deep_Learning_for_Precise_and_Efficient_Object_Detection.pdf
  • 2020-04-11 12:17:32, 119.86 K

» 猜你喜欢

» 抢金币啦!回帖就可以得到:

查看全部散金贴

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

朕要翻066

禁虫 (文学泰斗)


sig102657(金币+2): 谢谢参与
本帖内容被屏蔽

71楼2020-04-16 00:33:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 108 个回答

greenfly

木虫之王 (文学泰斗)



sig102657(金币+2): 谢谢参与
4楼2020-04-11 15:15:56
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

月夜孤066

禁虫 (文坛精英)


sig102657(金币+2): 谢谢参与
本帖内容被屏蔽

8楼2020-04-14 23:04:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

忆挽青066

禁虫 (文学泰斗)


sig102657(金币+2): 谢谢参与
本帖内容被屏蔽

9楼2020-04-14 23:04:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
tzynew2楼
2020-04-11 12:26   回复  
sig102657(金币+2): 谢谢参与
9 发自小木虫Android客户端
qian19503楼
2020-04-11 12:54   回复  
sig102657(金币+2): 谢谢参与
发自小木虫Android客户端
2020-04-13 07:26   回复  
sig102657(金币+2): 谢谢参与
发自小木虫Android客户端
adsl98767楼
2020-04-13 19:04   回复  
sig102657(金币+2): 谢谢参与
发自小木虫Android客户端
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见