| 查看: 307 | 回复: 1 | ||
| 当前主题已经存档。 | ||
[资源]
【分享】Computer Vision.Dana H. Ballard.Prentice-Hall.1982[New]
|
||
|
本资源来自于互联网,仅供学习研究之用,不可涉及任何商业用途,请在下载后24小时内删除。 著作权归原作者或出版社所有。未经发贴人conanwj许可,严禁任何人以任何形式转贴本文,违者必究! Computer Vision Author: Dana H. Ballard Publisher: Prentice-Hall 1982 Pages: 544 ISBN:0-13-165316-4 Preface: The dream of intelligent automata goes back to antiquity; its first major articulation in the context of digital computers was by Turing around I960. Since then, this dream has been pursued primarily by workers in the field of artificial intelligence, whose goal is to endow computers with information-processing capabilities comparable to those of biological organisms. From the outset, one of the goals of artificial intelligence has been to equip machines with the capability of dealing with sensory inputs. Computer vision is the construction of explicit, meaningful descriptions of physical objects from images. Image understanding is very different from image processing, which studies image-to-image transformations, not explicit description building. Descriptions are a prerequisite for recognizing, manipulating, and thinking about objects. We perceive a world of coherent three-dimensional objects with many invariant properties. Objectively, the incoming visual data do not exhibit corresponding coherence or invariance; they contain much irrelevant or even misleading variation. Somehow our visual system, from the retinal to cognitive levels, understands, or imposes order on, chaotic visual input. It does so by using intrinsic information that may reliably be extracted from the input, and also through assumptions and knowledge that are applied at various levels in visual processing. The challenge of computer vision is one of explicitness. Exactly what information about scenes can be extracted from an image using only very basic assumptions about physics and optics? Explicitly, what computations must be performed? Then, at what stage must domain-dependent, prior knowledge about the world be incorporated into the understanding process? How are world models and knowledge represented and used? This book is about the representations and mechanisms that allow image information and prior knowledge to interact in image understanding. Computer vision is a relatively new and fast-growing field. The first experiments were conducted in the late 1950s, and many of the essential concepts have been developed during the last five years. With this rapid growth, crucial ideas have arisen in disparate areas such as artificial intelligence, psychology, computer graphics, and image processing. Our intent is to assemble a selection of this material in a form that will serve both as a senior/graduate-level academic text and as a useful reference to those building vision systems. This book has a strong artificial intelligence flavor, and we hope this will provoke thought. We believe that both the intrinsic image information and the internal model of the world are important in successful vision systems. The book is organized into four parts, based on descriptions of objects at four different levels of abstraction. 1. Generalized images—images and image-likeentities. 2. Segmented images—images organized into subimagcs that are likely to correspond to "interesting objects." 3. Geometric structures—quantitative models of imageand world structures. 4. Relational structures—complex symbolic descriptions of image and world structures. The parts follow a progression of increasing abstractness. Although the four parts are most naturally studied in succession, they are not tightly interdependent. Part I is a prerequisite for Part II, but Parts III and IV can be read independently. Parts of the book assume some mathematical and computing background (calculus, linear algebra, data structures, numerical methods). However, throughout the book mathematical rigor takes a backseat to concepts. Our intent is to transmit a set of ideas about a new field to the widest possible audience. In one book it is impossible to do justice to the scope and depth of prior work in computer vision. Further, we realize that in a fast-developing field, the rapid influx of new ideas will continue. We hope that our readers will be challenged to think, criticize, read further, and quickly go beyond the confines of this volume. D. H. Ballard С. М. Brown 本资源共8个可选网络硬盘链接,7.66 MB。 -------------------------------------------------------------------------------------------------------- Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar Computer Vision,by Dana H. Ballard,Prentice-Hall 1982.rar -------------------------------------------------------------------------------------------------------- [ Last edited by conanwj on 2009-6-26 at 09:51 ] |
» 猜你喜欢
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复
实验室接单子
已经有7人回复
全日制(定向)博士
已经有5人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
对氯苯硼酸纯化
已经有3人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
简单回复
2009-08-13 09:59
回复
谢谢分享












回复此楼