| 查看: 388 | 回复: 6 | |||
| 当前主题已经存档。 | |||
[交流]
请求翻译一篇英文文献,关于化学的,谢了!
|
|||
|
Storage space is a perennial problem not only in macroscopic world but at the molecular level as well. Efficient storage of certain gases such as hydrogen, methane etc has futuristic technological applications. Therefore, race is on for the discovery of new materials with largest storage capacity per gram of the material. Metal organic framework (MOF) materials are a class of light weight hybrid materials with surface areas per gram that could cover an entire foot ball field. This article gives a glimpse of the recent advances in MOFs. Introduction Porous solids are of scientific and technological interest [1].They are classified according to their pore diameter, materials with pore size of 20 Å or less are called microporous, those with pore size in the range of 20 to 500 Å are called mesoporous and those having pore size of more than 500 Å are called macroporous. Among the well known porous materials are zeolites which may be aluminosilicates and aluminophosphates [2]. They are purely inorganic porous materials. Metal organic frameworks (MOFs) are another class of porous materials consisting of metal ions and coordinating organic spacer units. They are crystalline in nature and belong to the general family of coordination polymers. The basic building blocks for such hybrid materials are metal ions and polydentate organic ligands [3]. These open framework materials are of current interest for many technological applications such as gas storage, molecule separations and catalysis; hydrogen storage, chiral separation and heterogeneous catalysis are focus areas. Primary Building Blocks of MOFs The organic spacers generally contain carboxylic acid and amine functionality, although potentially any coordinating functional group such as nitrile, isonitrile and thiol can be used. The organic spacers and the metal ions form the primary building blocks in the synthesis of MOFs resulting in certain motifs which are the secondary building units (SBUs). Propagation of the SBUs into two- and three-dimensional network results in the formation of MOFs. With the proper choice of the metal ion and the organic spacers, it is possible to tailor-make MOFs of specific dimension, pore size and functionalities. According to Yaghi [3] the synthesis of MOFs is termed as reticular synthesis. The metal ion controls the coordination geometry (square planar, tetrahedral, octahedral etc) and organic spacer controls features such as the directionality of propagation and size of the pores formed in such materials. Some of the commonly employed organic spacers and building units are shown in Scheme 1. Based on the structural analysis of several MOFs, Ramanan and Whittingham [4] have suggested that the formation of the point zero charge (pzc) molecule at the isoelectric point is crucial for the formation of neutral MOFs with well defined structures. Formation of ionic MOFs would primarily be controlled by electrostatic interactions between the ions. The formation of pzc molecule occurs by the displacement of water molecules (in aqueous medium) from the aqua complex of the metal ions by the organic spacers. The initial interaction would be hydrogen bonding between the coordinated water molecules and the hetero atom of the organic spacers. Formation of well-defined geometries of pzc molecule is controlled by the coordination geometry of the metal ion itself. Secondary Building Units (SBUs) Coordination of carboxylate ion to a metal center can result in many different SBUs, of which paddle wheel and M4O(CO2)6 motifs will be discussed here [5]. Coordination of four carboxylate groups around two metal centers result in the formation of the paddle wheel motif with two free coordination sites on the metal centers that can propagate this SBUs into linear (one-dimensional) network (Scheme 2). If a dicarboxylic acid is used instead of a monocarboxylic acid, it could result in the formation of a two-dimensional network and with an additional ligand coordinated on the metal center (L-L), a three-dimensional network can be generated (Scheme 3). Typical examples of L-L ligands are 4,4¢-bipyridine and 1,4-diazabicyclo[2.2.2] octane (DABCO) (Scheme 1). Some of the organic linkers that can impart higher dimensionality to the MOFs are shown in Scheme 1. The shape and geometry of these linkers strongly influence the pore size, geometry and topology of the MOFs obtained. The octahedral geometry of the M4O(CO2)6 motif is defined by the four MO4 tetrahedra sharing a common vertex, and six carboxylic acid carbons occupying the vertices of the octahedron (Scheme 4) [6]. The M4O(CO2)6 SBUs are typically formed when the organic linker is reacted with the metal oxide rather than metal salts. The M4O(CO2)6 SBUs are connected by aromatic rings to yield MOFs of different structures. For example, when the SBUs are connected by para phenylene units (for example, terephthalic acid derivatives), the MOFs formed have a cubic structure as shown in Scheme 5. Examples of carboxylate building blocks and the topology of the SBUs that can be generated using them are shown in Scheme 6. Using the reticular approach an endless array of MOFs can be generated with varied topologies, pore dimensions and pore volumes. |
» 猜你喜欢
全日制(定向)博士
已经有5人回复
假如你的研究生提出不合理要求
已经有10人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
实验室接单子
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
2楼2009-06-05 08:43:25
zhaoshans
铁杆木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 5289.6
- 红花: 1
- 帖子: 260
- 在线: 39小时
- 虫号: 466956
- 注册: 2007-11-24
- 性别: MM
- 专业: 环境工程
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
zhaodiyu(金币+8,VIP+0):翻译得不错!谢谢 6-7 15:05
qingfeng877680(金币+11,VIP+0):代楼主发金币,兄弟翻译辛苦了。 7-18 16:25
zhaodiyu(金币+8,VIP+0):翻译得不错!谢谢 6-7 15:05
qingfeng877680(金币+11,VIP+0):代楼主发金币,兄弟翻译辛苦了。 7-18 16:25
|
Storage space is a perennial problem not only in macroscopic world but at the molecular level as well. Efficient storage of certain gases such as hydrogen, methane etc has futuristic technological applications. Therefore, race is on for the discovery of new materials with largest storage capacity per gram of the material. Metal organic framework (MOF) materials are a class of light weight hybrid materials with surface areas per gram that could cover an entire foot ball field. This article gives a glimpse of the recent advances in MOFs. Introduction Porous solids are of scientific and technological interest [1].They are classified according to their pore diameter, materials with pore size of 20 Å or less are called microporous, those with pore size in the range of 20 to 500 Å are called mesoporous and those having pore size of more than 500 Å are called macroporous. Among the well known porous materials are zeolites which may be aluminosilicates and aluminophosphates [2]. They are purely inorganic porous materials. Metal organic frameworks (MOFs) are another class of porous materials consisting of metal ions and coordinating organic spacer units. They are crystalline in nature and belong to the general family of coordination polymers. The basic building blocks for such hybrid materials are metal ions and polydentate organic ligands [3]. These open framework materials are of current interest for many technological applications such as gas storage, molecule separations and catalysis; hydrogen storage, chiral separation and heterogeneous catalysis are focus areas. 储藏空间不仅在宏观世界里是一个常见的问题,而且也存在于分子水平上。对一些气体如氢气、甲烷有效的储藏是合于未来工业应用的。因此,开始了一轮为发现新材料的比赛,这类材料单位质量具有最大的存储容量。金属有机结构材料是一类重量轻的杂化材料,其每克的表面积,可涵盖整个脚球场。本文介绍了MOFs的最新进展情况。 前言 多孔固体是科学和技术研究的兴趣所在。多孔固体按孔径大小分类,孔径在20或更小的被称为微孔,那些孔径范围为20至500被称为介孔,孔径超过500 的,被称为大孔。 在众所周知的多孔材料中,沸石是其中的一种,沸石有铝硅酸盐和铝磷酸盐。他们是纯的无机多孔材料。金属有机结构是另一类多孔材料,由金属离子和相应的有机间隔单元组成。他们在天然下是结晶的,属于一般的配位聚合物。这种杂化材料的基本构架是金属离子和多配位基的有机配体。这些开放的结构材料是当前许多技术应用所关心的,如天然气储存,分子分离和催化;贮氢,手性分离和多相催化等重点领域。 先翻这些吧,太麻烦了 |
3楼2009-06-05 16:47:53
monitor2885
至尊木虫 (职业作家)
队长
- 翻译EPI: 15
- 应助: 6 (幼儿园)
- 贵宾: 0.339
- 金币: 38700.5
- 散金: 147
- 红花: 22
- 帖子: 4943
- 在线: 2166.8小时
- 虫号: 701577
- 注册: 2009-02-15
- 性别: GG
- 专业: 生态系统生态学

4楼2009-06-05 19:46:39
zhaoshans
铁杆木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 5289.6
- 红花: 1
- 帖子: 260
- 在线: 39小时
- 虫号: 466956
- 注册: 2007-11-24
- 性别: MM
- 专业: 环境工程
5楼2009-06-06 10:12:56
jichongcml
金虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 1761.9
- 红花: 2
- 帖子: 262
- 在线: 63.3小时
- 虫号: 588374
- 注册: 2008-08-22
- 专业: 有机合成
★
zhaodiyu(金币+1,VIP+0):在线翻译的吧 6-7 15:06
zhaodiyu(金币+1,VIP+0):在线翻译的吧 6-7 15:06
|
存储空间是一个长期存在的问题不仅在宏观世界,但在分子水平上的。有效的存储的某些气体,如氢气,甲烷等的未来技术的应用。因此,比赛是为发现新的材料,最大的存储容量每克材料。 金属有机框架(财政部)材料是一类重量轻杂化材料的表面积每克,可涵盖整个脚球场。本文看到的最新进展情况MOFs 。 导言 多孔固体是科学和技术的兴趣[ 1 ] 。他们是按他们的孔径,材料,孔径20或更少被称为微孔,那些孔径范围为20至500被称为介和那些有孔径超过500 ,被称为大。 在众所周知的多孔材料的沸石可aluminosilicates和aluminophosphates [ 2 ] 。他们纯粹是无机多孔材料。金属有机框架( MOFs )是另一个类多孔材料组成的金属离子和协调有机间隔单位。他们结晶性质,属于一般家庭的协调高分子 地球资源卫星。基石对这种混合材料的金属离子和polydentate有机配体[ 3 ] 。这些开放的框架材料是当前关心的许多技术应用,如天然气储存,分子分离和催化;贮氢,手性分离和多相催化的重点领域。 小学积木MOFs 有机间隔通常包含羧酸和胺的功能,但潜在的任何协调功能组,如丁腈,异和硫醇都可以使用。有机间隔和金属离子形成的主要构件的合成MOFs导致某些图案是次要建设单位( SBUs ) 。 繁殖SBUs分为和三维网络的结果是形成MOFs 。适当选择的金属离子和有机间隔,可以度身订造使MOFs的具体尺寸,孔的大小和功能。据亚吉[ 3 ]的合成MOFs称为 网状合成。金属离子的协调控制几何(正方形平面,四面体,八面体等)和有机间隔控制功能,如传播的方向和大小的孔隙中形成这种材料。一些常用的有机间隔和建设单位中显示计划1 。 基于结构分析的几个MOFs , Ramanan和惠廷厄姆[ 4 ]建议,形成了点零电荷( pzc )分子的等电点是至关重要的形成与中立MOFs明确结构。形成离子MOFs主要是控制静电离子之间的相互作用。 形成pzc分子发生了流离失所的水分子(在水溶液中)由复杂的水的金属离子的有机间隔。最初的互动将是氢键之间的协调的水分子和杂原子的有机间隔。形成明确的几何pzc分子所控制的协调几何的金属离子本身。 次级结构单元( SBUs ) 协调羧酸离子金属中心可能会导致许多不同的SBUs ,其中桨轮和M4O (二氧化碳) 6图案将在这里讨论[ 5 ] 。 协调四个羧基围绕两个金属中心造成的形成桨轮序的两个网站上免费协调中心的金属,可以宣传本SBUs到线性(一维)网络(计划2 ) 。 如果二元酸是用来代替一元羧酸,它可能导致形成一个双向的网络,并有额外的配体的金属协调中心(当地雇员) ,三维网络可以生成(计划3 ) 。 典型的例子是黎巴嫩镑配体4,4 ¢ -联吡啶和1,4 - diazabicyclo [ 2.2.2 ]辛烷( DABCO ) (计划1 ) 。一些有机连接,可以传递更高维度的MOFs列在计划1 。形状和几何形状的强烈影响这些连接的孔径大小,几何与拓扑的MOFs获得。 的八面体几何形状M4O (二氧化碳) 6序所定义的四个MO4四面体共用一个共同的顶点, 6个羧酸碳占领顶点的八面体(计划4 ) [ 6 ] 。 该M4O (二氧化碳) 6 SBUs通常是形成有机连接的反应与金属氧化物,而不是金属盐。该M4O (二氧化碳) 6 SBUs连接的芳香环,收益率为MOFs的不同结构。例如,当SBUs连接的第苯单位(例如,对苯二甲酸衍生物) , 形成了MOFs有立方结构所显示的计划5 。 例子羧酸积木和拓扑的SBUs ,可以利用他们产生所示计划6 。使用网状方式无休止的MOFs可以生成具有不同拓扑结构,孔隙尺寸和孔隙体积。 |
6楼2009-06-06 15:45:56
zhaoshans
铁杆木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 5289.6
- 红花: 1
- 帖子: 260
- 在线: 39小时
- 虫号: 466956
- 注册: 2007-11-24
- 性别: MM
- 专业: 环境工程
7楼2009-06-06 16:35:21












回复此楼