24小时热门版块排行榜    

CyRhmU.jpeg
查看: 5030  |  回复: 123
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

zhishenglv

金虫 (著名写手)


[交流] [ACS Energy Letters] 可定制电化学储能器件 散金100~

custom-made electrochemical energy storage devices

abstract
customizable electrochemical energy storage device represents a key technology for the realization of wearable and bio-integrated electronics. this perspective begins with a brief introduction of the drive for customizable electrochemical energy storage devices. the following section involves the first-decade development trajectory of the customizable electrochemical energy storage devices. it then discusses the challenges and the future directions of the customizable electrochemical energy storage devices, calling for customizable electrochemical energy storage devices that allow users to select, design and change the functions (including capacity, flexibility, shapes, and functionalities) according to real-world application scenarios. the leveraging of the customizable electrochemical energy storage devices will shed a light on smarter and programmable electrochemical energy storage devices to power future wearable and bio-integrated electronics.

key content:

the drive for customizable electrochemical energy storage devices

the first-decade journey towards customizable ees devices

innovations in materials and structures of customizable devices

further extension of efficient fabrication methods and integrated multifunctional systems

artificial intelligence enabled programmable combinations of customizable properties


https://pubs.acs.org/doi/10.1021/acsenergylett.8b02408

托老师的福,邀稿的perspective, 算是对自己做的工作的一个小结展望,希望对大家未来开展方向有用 未完待续,集齐东西再来做个总结帖。。。

附带帮我前面两篇文章推销下

蜂窝状任意三维形状超级电容器 (聚吡咯/黑磷氧化物/石墨烯氧化物)

honeycomb‐lantern‐inspired 3d stretchable supercapacitors with enhanced specific areal capacitance

abstract
traditional stretchable supercapacitors, possessing a thin electrode and a 2d shape, have limited areal specific areal capacitance and are incompatible with 3d wearables. to overcome the limitations of 2d stretchable supercapacitors, it is highly desirable to develop 3d stretchable supercapacitors with higher mass loading and customizable shapes. in this work, a new 3d stretchable supercapacitor inspired by a honeycomb lantern based on an expandable honeycomb composite electrode composed of polypyrrole/black‐phosphorous oxide electrodeposited on carbon nanotube film is reported. the 3d stretchable supercapacitors possessing device‐thickness‐independent ion‐transport path and stretchability can be crafted into customizable device thickness for enhancing the specific areal energy storage and integrability with wearables. notably, a 1.0 cm thick rectangular‐shaped supercapacitor shows enhanced specific areal capacitance of 7.34 f cm−2, which is about 60 times higher than that of the original 2d supercapacitor (120 mf cm−2) at a similar discharge rate. the 3d supercapacitor can also maintain a capacitance ratio of 95% even under the reversible strain of 2000% after 10 000 stretch‐and‐release cycles, superior to state‐of‐the‐art stretchable supercapacitors. the enhanced specific areal energy storage and the customizability in shapes of the 3d stretchable supercapacitors show immense promise in a wide range of applications in stretchable and wearable electronics.

keywords

3d supercapacitors, black phosphorus, expandable honeycomb structures, flexible electronics, polypyrrole

原文链接: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805468

可编辑超级电容 (mno2 纳米线/碳纳米管/纳米纤维素)
editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong mno2 nanowire composite

abstract:although some progress has been made on stretchable supercapacitors, traditional stretchable supercapacitors fabricated by predesigning structured electrodes for device assembling still lack the device-level editability and programmability. to adapt to wearable electronics with arbitrary configurations, it is highly desirable to develop editable supercapacitors that can be directly transferred into desirable shapes and stretchability. in this work, editable supercapacitors for customizable shapes and stretchability using electrodes based on mechanically strengthened ultralong mno2 nanowire composites are developed. a supercapacitor edited with honeycomb-like structure shows a specific capacitance of 227.2 mf cm−2 and can be stretched up to 500% without degradation of electrochemical performance, which is superior to most of the state-of-the-art stretchable supercapacitors. in addition, it maintains nearly 98% of the initial capacitance after 10 000 stretch-and-release cycles under 400% tensile strain. as a representative of concept for system integration, the editable supercapacitors are integrated with a strain sensor, and the system exhibits a stable sensing performance even under arm swing. being highly stretchable, easily programmable, as well as connectable in series and parallel, an editable supercapacitor with customizable stretchability is promising to produce stylish energy storage devices to power various portable, stretchable, and wearable devices.

原文链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201704531

[ Last edited by zhishenglv on 2019-1-23 at 10:56 ]
回复此楼

» 收录本帖的淘帖专辑推荐

锂离子电池专题(技术答疑)

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

» 抢金币啦!回帖就可以得到:

查看全部散金贴

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Gamry-电化学

金虫 (职业作家)


★ ★ ★ ★ ★ ★ ★ ★ ★
zhishenglv(金币+2): 谢谢参与
zhishenglv: 金币+8 2019-02-15 15:23:01
zhishenglv: 回帖置顶 2019-02-21 10:48:07
电化学储能器件! Great!
51楼2019-02-15 00:52:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zhishenglv 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见