24小时热门版块排行榜    

查看: 639  |  回复: 4
当前主题已经存档。

guojjun

铜虫 (著名写手)

[交流] 分享一篇好文章:Catalysis: principles, progress, prospects

这是发表在Phil. Trans. R. Soc. A (2005) 363, 765–791的一篇文章。
可能搞催化的人很少会去这里找文章,一般也看不到这个杂志。
因为文章很好,所以弄来看看。也分享给大家 。
实际上,这篇文章主要讨论了多相,均相和酶之间的结合点,并给出了十分详尽的例子。值得做为拓展知识的读物。


还是给出链接地址吧

[ Last edited by jqwhy on 2006-3-19 at 18:35 ]
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

niejq

捐助贵宾 (知名作家)

职业顶帖手

1

记得补上哦
有一种友情,叫做回复;有一种素质,叫做跟贴! 看帖回帖,利人利己,利国利民!
2楼2005-10-23 21:36:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

asymmsyn

至尊木虫 (著名写手)

1

先把介绍和References贴出来了。
Catalysis: principles, progress, prospects

John Meurig Thomas A1 A2 and Robert J.P. Williams A3
A1 Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, UK (jmt2@cam.ac.uk)
A2 Davy Faraday Research Laboratory, Royal Institution of Great Britain, London W1X 4BS, UK
A3 Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, UK

Abstract:
In this introductory paper, we endeavour to bridge the gaps that currently exist between the three main subdivisions of catalysis: enzymatic, homogeneous and heterogeneous. Hitherto, there has been a tendency for each of these three divisions to grow separately using their own concepts, phrases and techniques. However, there is much that unites them, not least the notion of the catalytically active site and, in particular, its often unusual (constrained) state of electronic or atomic environmental disposition. We identify many points of similarity between, for example, the mode of action of, metalloenzymes on the one hand and the recent generation of transition metal ions embedded within nanoporous (usually siliceous) solids on the other. Useful unifying principles emerge from considerations of free-energy/reaction-coordinate plots.We present a number of tabulations and comparisons designed to facilitate the understanding of the mode of operation of existing, and the performance of new, catalysts. In doing so, we have drawn on our own work as well as that of others, including contributions that are to be found in this volume, with the intention of covering the great variety of catalytic phenomena.
--------------------------------------------------------------------------------
Keywords:
enzymes, homogeneous catalysts, heterogeneous catalysts, constrained state, free energy diagrams, nanoporous solids, metal surfaces, matrices of catalysts, active sites
--------------------------------------------------------------------------------

References:
1.Armstrong, F.A. & Albracht, S.P.J. 2005 [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Phil. Trans. R. Soc. A 363, 937–954 doi:10.1098/rsta.2004.1528.
2.Carley, A.F., Davies, P.R. & Roberts, M.W. 2005 Activation of oxygen at metal surfaces. Phil. Trans. R. Soc. A 363, 829–846 doi:10.1098/rsta.2004.1544.
3.Catlow, C.R.A., French, S.A., Sokol, A.A. & Thomas, J.M. 2005 Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts. Phil. Trans. R. Soc. A 363, 913–936 doi:10.1098/rsta.2004.1529.
4.Copéret, C., Chabanas, M., Saint-Arroman, R.P. & Basset, J.M. 2003 Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. Engl. 42, 156–181.
5.Darnault, C., Volbeda, A., Kim, E.J., Legrand, P., Vernède, X., Lindahl, P.A. & Fontecilla-Camps, J.C. 2003 Ni–Zn–[Fe4–S4] and Ni–Ni–[Fe4S4] clusters in closed and open forms of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat. Struct. Biol. 10, 271–279.
6.Dennard, A.E. & Williams, R.J.P. 1967 Transition metal ions as reagents in metallo-enzymes, in “transition metal chemistry” (ed. Carlin, D.), vol. II. pp. 115, New York: Dekker
7.Ertl, G. 1990 Synthesis of ammonia on an iron surface. Angew. Chem. Int. Ed. Engl. 29, 1219–1223.
8.Ertl, G. 2005 Activation of diatomic molecules at solid surfaces. Phil. Trans. R. Soc. A 363, 955–958 doi:10.1098/rsta.2004.1530.
9.Foster, M.A., Hill, H.A.O. & Williams, R.J.P. 1970 Cobalt as a functional group in enzymes. Biochem. Soc. Symp. 31, 187–202.
10.Gray, H.B., Malmström, B.G. & Williams, R.J.P. 2000 Copper coordination in blue proteins. J. Biol. Inorg. Chem. 5, 551–559.
11.Green, M.T., Dawson, J.H. & Gray, H.B. 2004 Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P-450 chemistry. Science 304, 1653–1655.
12.Hewitson, K.S., Granatino, N., Welford, R.W.D., McDonough, M.A. & Schofield, C.J. 2005 Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling. Phil. Trans. R. Soc. A 363, 807–828 doi:10.1098/rsta.2004.1540.
13.Johánek, V., Laurin, M., Grant, A.W., Kasemo, B., Henry, C.R. & Libuda, J. 2004 Fluctuations and bistabilities on catalyst nanoparticles. Science 304, 1639–1643.
14.Koga, N. & Morakuma, K. 1969 The challenge of d and f electrons: theory and computation. ACS Symp. 394, 79–92.
15.Malmström, B.G. & Leckner, R. 1998 The chemical biology of copper. Curr. Opin. Chem. Biol. 2, 286–292.
16.Mason, S.J. 2005 Catalysis in chemistry and biochemistry: summary and concluding remarks. Phil. Trans. R. Soc. A 363, 1035–1040 doi:10.1098/rsta.2004.1546.2001
17.Metalloproteins I and II, New York: Wiley
18.Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S. & Dutton, P.L. 1992 Nature of biological electron transfer. Nature 355, 796–802.
19.Noyori, R. 2002 Asymmetric catalysis: science and opportunities (nobel lecture). Angew. Chem. Int. Ed. Engl. 141, 2008–2022.
20.Poulos, T.L. 2005 Intermediates in P450 catalysis. Phil. Trans. R. Soc. A 363,793–806 doi:10.1098/rsta.2004.1537.
21.Raja, R., Thomas, J.M., Jones, M.D., Johnson, B.F.G. & Vaughan, D.E.W. 2003 Constraining asymmetric organometallic catalysts within mesoporous supports boosts their enantioselectivity. J. Am. Chem. Soc. 125, 14982–14983.
22.Ratnasamy, P., Raja, R. & Srinivas, D. 2005 Novel, benign, solid catalysts for the oxidation of hydrocarbons. Phil. Trans. R. Soc. A 363, 1001–1012 doi:10.1098/rsta.2004.1538.
23.Rees, D.C., Tezcan, F.A., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O. & Howard, J.B. 2005 Structural basis of biological nitrogen fixation. Phil. Trans. R. Soc. A 363, 971–984 doi:10.1098/rsta.2004.1539.
24.Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips, G.N., Jr, Wulff, M. & Anfinrud, P.A. 2003 Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947.
25.Schrock, R.R. 2005 Catalytic reduction of dinitrogen to ammonia at well-defined single metal sites. Phil. Trans. R. Soc. A 363, 959–969 doi:10.1098/rsta.2004.1541.
26.Siegbahn, P.E.M. 2003 Mechanisms of metalloenzymes studied by quantum chemical methods. Q. Rev. Biophys. 36, 91–145.
27.Sinfelt, J.H. 1983 Bimetallic catalysts: discoveries, concepts and applications. New York: Wiley.
28.Somorjai, G.A. & Marsh, A.L. 2005 Active sites and states in the heterogeneous catalysis of carbon–hydrogen bonds. Phil. Trans. R. Soc. A 363, 879–900 doi:10.1098/rsta.2004.1543.
29.Srinivasan, R., Lobastov, V.A., Ruan, C.-Y. & Zewail, A.H. 2003 Ultrafast electron diffraction: a new development for the 4D determination of transient molecular structures. Helv. Chim. Acta 86, 1761–1838.
30.Tennison, S.R. 1991 Ruthenum catalyst for improved ammonia synthesis. Catalytic ammonia synthesis. Fundamentals and practice (ed. Jennings, J.), pp. 113–128, New York: Plenum Press
31.Thomas, J.M. 2004 Ultrafast electron crystallography: the dawn of a new era. Angew. Chem. Int. Ed. Engl. 43, 2606–2610.
32.Thomas, J.M. & Raja, R. 2001 Catalytically active centres in porous oxides: design and performance of highly selective new catalysts. Chem. Commun., 675–687.
33.Thomas, J.M., Catlow, C.R.A. & Sankar, G. 2002 Determining the structure of active sites, transition states and intermediates in heterogeneously catalyzed reactions. Chem. Commun., 2921–2925.
34.Thomas, J.M., Johnson, B.F.G., Raja, R., Sankar, G. & Midgley, P.A. 2003 High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30.
35.Vallee, B.L. & Williams, R.J.P. 1968 Metallo-enzymes: the entatic nature of their active sites. Proc. Natl Acad. Sci. USA 59, 498–503.
36.Van Leeuwen, P.W.N.H. 2004 Homogeneous catalysis: understanding the activity. Dordrecht: Kluwer Academic Publications.
37.Vigliotti, F., Chen, S., Ruan, C.-Y., Lobastov, V.A. & Zewail, A.H. 2004 Ultrafast electron crystallography of surface structural dynamics with atomic-scale resolution. Angew. Chem. Int. Ed. Engl. 43, 2705–2709.
38.Williams, R.J.P. 1959 Coordination, chelation and catalysis. the enzymes (eds. Boyer, P. Lardy, H. & Myrback, K.), vol. 1. pp. 391–422, New York: Academic Press
39.Williams, R.J.P. 1961 Nature and properties of metal ions of biological interest and their coordination compounds. Fed. Proc. 2, 5–14.
41.Williams, R.J.P. 2002 The problem of proton transfer in membranes. J. Theor. Biol. 219, 389–396.
41.Williams, R.J.P. 2003 Metallo-enzyme catalysis. Chem. Commun. Chem. Soc. Lond., 1109–2003.
3楼2005-10-23 22:55:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

qingquan837

金虫 (正式写手)

1

已经下载了,谢谢
4楼2005-12-01 09:48:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

jiebo-chen

金虫 (正式写手)

去看看
5楼2006-03-19 16:52:59
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 guojjun 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见