24小时热门版块排行榜    

CyRhmU.jpeg
查看: 220  |  回复: 1
当前主题已经存档。

dc2003121106

金虫 (著名写手)

[交流] 【前沿】Science:科学家制造出“病毒电池”

2009-04-07 《科学》
内容快照:

美国麻省理工学院科学家利用病毒制造了一种环境友好型高功率锂离子电池,这种电池将来可望用于便携式电子装置和混合动力汽车中。该研究论文发表在4月2日的《科学》上。

该论文介绍说,他们首先将长条状的M13病毒进行基因编程,使其表面可以生长出作为电极的无定形磷酸铁。无定形磷酸铁一般来说并非良好的导体,但它在纳米尺度下则成为一种有用的电池材料。这些病毒的末端被设计成与碳纳米管连接,从而形成一种可在电池内增进导电性能的网络结构。

科学家们利用显微镜对数以百万计的病毒DNA进行扫描后,选定了M13病毒。这种病毒长度为880纳米,是一种非常简单且容易操控的病毒,对人体无害。

研究人员发现,这种与碳纳米管“绑定”的转基因病毒可以使磷酸铁电极的充放电率与目前最尖端的结晶状磷酸锂铁电极相媲美。这种“病毒电池”可以充放电至少100次而不损失电容,尽管与磷酸锂铁电池仍有差距,但后者价格昂贵而且有毒,而“病毒电池”的优点显而易见:可以在室温或室温以下制备,不需要有害的有机溶剂,电池内部的物质也无毒。

领导这项研究的安杰拉·贝尔彻说,他们下一步计划利用可产生更高电容、电压的物质如磷酸锰、磷酸镍等,开发性能更好的电池,并期待相关技术可以尽早进入商业应用阶段。  

(《科学》(Science),doi:10.1126/science.1171541,Yun Jung Lee,Angela M. Belcher)
  



Published Online April 2, 2009
Science DOI: 10.1126/science.1171541
Submitted on January 29, 2009
Accepted on March 25, 2009

Fabricating Genetically Engineered High-Power Lithium Ion Batteries Using Multiple Virus Genes
Yun Jung Lee 1 , Hyunjung Yi 1 , Woo-Jae Kim 2 , Kisuk Kang 3 , Dong Soo Yun 1 , Michael S. Strano 2 , Gerbrand Ceder 1 , Angela M. Belcher 4 *
1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3 Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335, Gwahangno, Yuseong-gu, Daejeon, Korea, 305-701.; KAIST Institute for Eco-Energy, 335, Gwahangno, Yuseong-gu, Daejeon, Korea, 305-701.
4 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Development of materials that deliver more energy at high charge/discharge rates is important for high power applications, including portable electronic devices and hybrid electric vehicles. Reducing materials dimensions for lithium ion batteries can boost Li + ion and electron transfer in nanostructured electrodes. We developed a strategy for attaching electrochemically active materials to conducting carbon nanotubes networks through biological molecular recognition. By manipulating two genes of the M13 virus, viruses were equipped with peptide groups with affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate (a-FePO 4 ) fused to the viral major coat protein. For the virus clone that demonstrated 10 times greater affinity towards SWNTs, power performance of a-FePO 4 was comparable to that of crystalline lithium iron phosphate (c-LiFePO 4 ). The electrodes showed excellent capacity retention upon cycling at 1C for at least 50 cycles. This environmentally benign low temperature biological scaffold could facilitate fabrication of electrodes from materials that have been excluded because of their extremely low electronic conductivity.
回复此楼

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

10年SEM/EDS/EBSD经验
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nannanmingming

金虫 (小有名气)

谢谢分享!能否上传这篇文章?谢谢
2楼2009-04-13 23:38:50
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 dc2003121106 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见