24小时热门版块排行榜    

查看: 1895  |  回复: 14
当前主题已经存档。

mao_faust

铁虫 (小有名气)

[交流] MIT锂离子电池研究的又一重大发现

New virus-built battery could power cars, electronic devices

http://web.mit.edu/newsoffice/2009/virus-battery-0402.html

For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery.

The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.

The new batteries, described in the April 2 online edition of Science, could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.

In a traditional lithium-ion battery, lithium ions flow between a negatively charged anode, usually graphite, and the positively charged cathode, usually cobalt oxide or lithium iron phosphate. Three years ago, an MIT team led by Belcher reported that it had engineered viruses that could build an anode by coating themselves with cobalt oxide and gold and self-assembling to form a nanowire.

In the latest work, the team focused on building a highly powerful cathode to pair up with the anode, said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. Cathodes are more difficult to build than anodes because they must be highly conducting to be a fast electrode, however, most candidate materials for cathodes are highly insulating (non-conductive).

To achieve that, the researchers, including MIT Professor Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically "wired" to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time.

The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode's conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but "we expect them to be able to go much longer," Belcher said.

The prototype is packaged as a typical coin cell battery, but the technology allows for the assembly of very lightweight, flexible and conformable batteries that can take the shape of their container.

Last week, MIT President Susan Hockfield took the prototype battery to a press briefing at the White House where she and U.S. President Barack Obama spoke about the need for federal funding to advance new clean-energy technologies.

Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.

Lead authors of the Science paper are Yun Jung Lee and Hyunjung Yi, graduate students in materials science and engineering. Other authors are Woo-Jae Kim, postdoctoral fellow in chemical engineering; Kisuk Kang, recent MIT PhD recipient in materials science and engineering; and Dong Soo Yun, research engineer in materials science and engineering.

The research was funded by the Army Research Office Institute of the Institute of Collaborative Technologies, and the National Science Foundation through the Materials Research Science and Engineering Centers program.
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

liuliu4411

银虫 (正式写手)

很强啊,呵呵

[ Last edited by liuliu4411 on 2009-4-9 at 10:53 ]
人到底有低俗的权力吗?
2楼2009-04-09 10:21:14
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

liuliu4411

银虫 (正式写手)

病毒那里有卖的?
人到底有低俗的权力吗?
3楼2009-04-09 10:21:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mao_faust

铁虫 (小有名气)

简单来说,就是用病毒帮助形成 磷酸铁锂·碳纳米管 材料,实现高倍率充放电
4楼2009-04-09 10:30:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

jocelyn-xixi

木虫 (正式写手)

不就是纳米材料嘛
5楼2009-04-09 10:35:50
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

liuliu4411

银虫 (正式写手)

有工业意义吗??
人到底有低俗的权力吗?
6楼2009-04-09 13:49:33
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

dnaja

木虫 (著名写手)

引用回帖:
Originally posted by liuliu4411 at 2009-4-9 13:49:
有工业意义吗??

如果能实现工业应用的话,那这个世界会变的很美好的。
钓鱼+喝茶
7楼2009-04-09 18:15:06
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mhwu514

禁虫 (小有名气)

............
8楼2009-04-26 15:05:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

shg312k

木虫 (知名作家)

纯纯家族☞电子纯

是那片NATURE的结果吗?
人生不如意十有八九,但求无愧于心
9楼2009-04-28 21:13:30
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

bobyuan

神奇的生物
10楼2009-04-30 00:34:28
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 mao_faust 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见