|
|
★ ★ ★ ★ ★ ltqly(金币+3,VIP+0):不错 4-12 22:54 ltqly(金币+2,VIP+0):谢谢 4-13 21:58
版主不用再给我金币了,这帖子我都得了额外的9个金币了,不好意思了,呵呵
右边的函数在-T/2到T/2有两个无穷间断点,分成三个区间,所以有三个解,其它的,在每个区间都有解,我用MATLAB二分法做的如下:
function x=solvefun(A,B,tol)
a=5.1e-6;
d=0.006;
H1=60.0/30.3;
H2=30.0/30.3;
T=pi./d.*sqrt(a);
k=[ceil(A./T+sign(A)):ceil(B./T+sign(B))];
k=k.*T+sign(k)*T/2;
k=[k -sqrt(H1*H2) sqrt(H1*H2) ];
k=sort(k);
k=k(k>=A & k<=B & k~=0);
k=[A k B];
n=length(k);
tol=tol/10;
x=[];
t=0;
for i=1:n-1
xmin=k(i)+1e-8+tol;
xmax=k(i+1)-1e-8-tol;
xcur=(xmin+xmax)/2;
if sign(fun(xmin))*sign(fun(xmax))>0
continue;
end
while xmax-xmin>tol
if sign(fun(xmin))*sign(fun(xcur))>0
xmin=xcur;
else
xmax=xcur;
end
xcur=(xmin+xmax)/2;
end
t=t+1;
x(t)=xcur;
end
x=x';
function y=fun(x)
a=5.1e-6;
d=0.006;
H1=60.0/30.3;
H2=30.0/30.3;
y=tan(x.*d./sqrt(a))-x./sqrt(a).*(H1+H2)./(x.*x-H1*H2);
>> x=solvefun(-20,20,1e-10)
x =
-19.5049
-18.3228
-17.1407
-15.9586
-14.7765
-13.5944
-12.4122
-11.2301
-10.0480
-8.8659
-7.6838
-6.5017
-5.3196
-4.1375
-2.9555
-1.7735
-0.0000
1.7735
2.9555
4.1375
5.3196
6.5017
7.6838
8.8659
10.0480
11.2301
12.4122
13.5944
14.7765
15.9586
17.1407
18.3228
19.5049
>> fun(x)
ans =
1.0e-004 *
0.0001
0.0003
-0.0003
-0.0003
-0.0007
-0.0000
0.0010
-0.0015
0.0016
0.0012
-0.0011
-0.0035
-0.0073
-0.0060
0.0160
-0.1221
-0.0000
0.1221
-0.0160
0.0060
0.0073
0.0035
0.0011
-0.0012
-0.0016
0.0015
-0.0010
0.0000
0.0007
0.0003
0.0003
-0.0003
-0.0001
>>
由于曲线太陡,特别是接近0的区间,所以需要很高的精度才能保证函数值接近0。
[ Last edited by fspdlh on 2009-4-11 at 16:46 ] |
|