| 查看: 4315 | 回复: 28 | ||||
| 【奖励】 本帖被评价16次,作者askuyue增加金币 11.8 个 | ||||
[资源]
Sparse Optimization Theory and Methods
|
||||
|
Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author’s latest research in the field that have not appeared in other books. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Sparse_Optimization_Theory_and_Methods2018.zip
2018-09-06 19:32:01, 5.05 M
» 收录本帖的淘帖专辑推荐
数学分析 | 淘贴 |
» 猜你喜欢
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有6人回复
有院领导为了换新车,用横向课题经费买了俩车
已经有9人回复
酰胺脱乙酰基
已经有13人回复
博士延得我,科研能力直往上蹿
已经有8人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有4人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有10人回复
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
2楼2018-09-06 20:48:47
3楼2018-09-06 21:12:20
5楼2018-09-08 05:43:47
6楼2018-09-08 15:05:20
|
本帖内容被屏蔽 |
9楼2018-09-11 04:24:30
10楼2018-09-11 10:18:49
13楼2018-10-01 18:00:16
14楼2018-10-07 15:39:12
15楼2018-10-19 14:08:48
25楼2020-05-07 16:33:55
26楼2021-03-07 22:37:11
27楼2023-02-19 17:22:56
28楼2023-02-19 17:29:01
29楼2023-02-19 17:42:33
简单回复
fenggaol4楼
2018-09-07 06:43
回复
五星好评 顶一下,感谢分享!
jml5067楼
2018-09-08 18:33
回复
五星好评 顶一下,感谢分享!
2018-09-09 22:19
回复
五星好评 顶一下,感谢分享!
jml50611楼
2018-09-30 16:42
回复
顶一下,感谢分享!
10500070lin12楼
2018-10-01 14:36
回复
五星好评 顶一下,感谢分享!
archdevil16楼
2019-02-21 11:57
回复
五星好评 顶一下,感谢分享!
jml50617楼
2019-05-21 14:28
回复
顶一下,感谢分享!
lanlandeyue18楼
2019-12-15 10:00
回复
五星好评 顶一下,感谢分享!
tangise19楼
2020-01-23 09:34
回复
一般 顶一下,感谢分享!
lanlandeyue20楼
2020-02-05 07:23
回复
顶一下,感谢分享!
10500070lin21楼
2020-02-05 16:30
回复
顶一下,感谢分享!
tdyso55522楼
2020-02-05 18:38
回复
五星好评 顶一下,感谢分享!
netfish198223楼
2020-04-03 09:27
回复
五星好评 顶一下,感谢分享!
atlas041224楼
2020-04-18 20:03
回复
五星好评 顶一下,感谢分享!













回复此楼