| 查看: 4259 | 回复: 28 | ||||
| 【奖励】 本帖被评价16次,作者askuyue增加金币 11.8 个 | ||||
[资源]
Sparse Optimization Theory and Methods
|
||||
|
Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author’s latest research in the field that have not appeared in other books. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Sparse_Optimization_Theory_and_Methods2018.zip
2018-09-06 19:32:01, 5.05 M
» 收录本帖的淘帖专辑推荐
数学分析 | 淘贴 |
» 猜你喜欢
计算机、0854电子信息(085401-058412)调剂
已经有5人回复
国自然申请面上模板最新2026版出了吗?
已经有13人回复
基金委咋了?2026年的指南还没有出来?
已经有3人回复
Materials Today Chemistry审稿周期
已经有5人回复
溴的反应液脱色
已经有7人回复
推荐一本书
已经有12人回复
基金申报
已经有4人回复
纳米粒子粒径的测量
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
有没有人能给点建议
已经有5人回复
2楼2018-09-06 20:48:47
3楼2018-09-06 21:12:20
5楼2018-09-08 05:43:47
6楼2018-09-08 15:05:20
|
本帖内容被屏蔽 |
9楼2018-09-11 04:24:30
10楼2018-09-11 10:18:49
13楼2018-10-01 18:00:16
14楼2018-10-07 15:39:12
15楼2018-10-19 14:08:48
25楼2020-05-07 16:33:55
26楼2021-03-07 22:37:11
27楼2023-02-19 17:22:56
28楼2023-02-19 17:29:01
29楼2023-02-19 17:42:33
简单回复
fenggaol4楼
2018-09-07 06:43
回复
五星好评 顶一下,感谢分享!
jml5067楼
2018-09-08 18:33
回复
五星好评 顶一下,感谢分享!
2018-09-09 22:19
回复
五星好评 顶一下,感谢分享!
jml50611楼
2018-09-30 16:42
回复
顶一下,感谢分享!
10500070lin12楼
2018-10-01 14:36
回复
五星好评 顶一下,感谢分享!
archdevil16楼
2019-02-21 11:57
回复
五星好评 顶一下,感谢分享!
jml50617楼
2019-05-21 14:28
回复
顶一下,感谢分享!
lanlandeyue18楼
2019-12-15 10:00
回复
五星好评 顶一下,感谢分享!
tangise19楼
2020-01-23 09:34
回复
一般 顶一下,感谢分享!
lanlandeyue20楼
2020-02-05 07:23
回复
顶一下,感谢分享!
10500070lin21楼
2020-02-05 16:30
回复
顶一下,感谢分享!
tdyso55522楼
2020-02-05 18:38
回复
五星好评 顶一下,感谢分享!
netfish198223楼
2020-04-03 09:27
回复
五星好评 顶一下,感谢分享!
atlas041224楼
2020-04-18 20:03
回复
五星好评 顶一下,感谢分享!











回复此楼