| 查看: 320 | 回复: 2 | |||
| 当前主题已经存档。 | |||
[交流]
求助铁磁学中的双交换相互作用相关
|
|||
|
各位大侠: 请问铁磁学中的双交换相互作用的具体表达式是?双交换作用的交换积分的数量级别是多大 啊,请给点参考资料!谢谢! |
» 猜你喜欢
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复
实验室接单子
已经有7人回复
全日制(定向)博士
已经有5人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
对氯苯硼酸纯化
已经有3人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
05201102
木虫 (正式写手)
- 应助: 0 (幼儿园)
- 金币: 3840.9
- 帖子: 658
- 在线: 145.6小时
- 虫号: 730990
- 注册: 2009-03-25
- 性别: GG
- 专业: 合成药物化学
★ ★ ★ ★ ★ ★ ★ ★ ★ ★
hechun_2227865(金币+10,VIP+0):仍然谢谢你,你还是没回答双交换积分具体值 4-3 13:50
hechun_2227865(金币+10,VIP+0):仍然谢谢你,你还是没回答双交换积分具体值 4-3 13:50
|
铁磁学详细介绍 铁磁学又称为磁学(magnetism),,是现代物理学的一个重要分支。现代磁学是研究磁,磁场,磁材料,磁效应,磁现象及其实际应用的一门学科。 磁学和电学有着直接的联系。经典磁学认为如同电荷一样,自然界中存在着独立的磁荷。相同的磁荷互相排斥,不同的磁荷互相吸引。而现代磁学则认为环形电流元是磁极产生的根本原因,相同的磁极互相排斥,不同的磁极互相吸引。独立的磁荷是不存在的。由于电子围绕原子核的运动,所有的物质都具有某种特别的磁学效应。但是在自然界,铁,镍,钴等材料表现了很强的磁特性,所以磁学又被称为铁磁学。 古代磁学 不少天然的铁矿石在采出时就呈现一定的磁性,古人称它为“慈石”,意为慈爱的石头,隐含了它具有吸引铁材料的特性。这一名词后来逐渐演化为“磁石”,俗称为“吸铁石”。 在公元前四至前三世纪的战国后期,中国的《管子》一书中已经有了磁石和磁石吸引铁器的记载。汉初刘安(公元前179~前122)的《淮南子·览冥篇》中有“若以慈石之能连铁也,而取其引瓦,则难矣……”的记载。东汉王充(公元27~约97)的《论衡·乱龙篇》中有“顿牟摄芥,慈石引针……”(顿牟即琥珀;芥指芥菜子,统喻干草、纸等的微小屑末)的记述。这些都是以磁石吸引铁器作为比喻,来说明哲学或科学观点的记述,因此所举的事例必是当时一般的读者所熟悉的。 欧美的有关科技文献常把磁石吸铁的记载远溯到古希腊的泰勒斯时期,但这是根据亚里士多德的转述。根据这些记述可以认为,西方关于磁的最早记述始于公元前500年左右。 公元十世纪以前,中国的古人发明了指南针。指南针是中国古代的四大发明之一。从磁石引铁的发现到指南针的发明需要经过一系列的观察和实验,这是一个相当长的历史时期。 公元1044年,北宋曾公亮、丁度等修撰的《武经总要》中有应用磁石的水浮型指南针制法的叙述;沈括的《梦溪笔谈》也记述了用丝悬起的或硬滑支点(如碗的边缘)平衡着的铁针做的实验,并说明铁针所指不是正南而微偏东;略晚于沈括的朱或所著的《萍洲可谈》(约于公元1119年问世)则已提到广州海船在阴晦天气用指南针航海。 在欧洲,公元1190年以前没有一点关于磁石能指方向的史料,而在这一年航行于地中海的船上却确有了指南针,很可能是由那时期进行中国和阿拉伯间贸易的海船传去的。英国科学家吉伯认为它是由马可波罗(1254~1324)或其同时代人带回的,这样反而把这事推后了一个世纪。 经典磁学 法国物理学家库仑(Coulomb)于1785年确立了静电荷间相互作用力的规律——库仑定律之后,又对磁极进行了类似的实验后证明:同样的定律也适用于磁极之间的相互作用。这就是经典磁学理论。 在磁场的经典理论中,一个最基本的公式就是一个单独的没有任何尺寸大小的磁极在磁场中所受到的作用力的公式。但是和电场理论中的电荷的概念不一样,电场中的独立的正负电荷可以单独存在,而单独的正负磁极实际上是不存在的,磁极从来都是成对出现的。正负磁极一般称为磁北极和磁南极。为了避免这种理论上的困难,经典磁场理论认为一个非常细长的磁铁中的一个磁极则可以被近似地看着是一个单独的磁极。根据这样一个假设,从而可以得出一个单独的磁极在磁场中所受到的力和磁极本身的强度成正比,和磁极所在地点的磁场强度成正比的关系式。 现代磁学 经典磁场理论中,绝大多数的公式都是正确的,并且也一直沿用至今,但是在整个理论中最根本的问题是它采用了一个实际上并不存在的所谓单独的磁极的假设。这就是经典磁学理论中的所谓库伦方法的一个致命弱点。 丹麦物理学家奥斯特在1820年发现,一条通过电流的导线会使其近处静悬着的磁针偏转,显示出电流在其周围的空间产生了磁场,这是证明电和磁现象密切结合的第一个实验结果。紧接着,法国物理学家安培等的实验和理论分析,阐明了载着电流的线圈所产生的磁场,以及电流线圈间相互作用着的磁力。通过应用电流元产生磁场的方法,磁场理论中的很多概念和电场理论中的很多概念十分相近。 安培同时提出,铁之所以显现强磁性是因为组成铁块的分子内存在着永恒的电流环,这种电流没有像导体中电流所受到的那种阻力,并且电流环可因外来磁场的作用而自由地改变方向。这种电流在后来的文献中被称为“安培电流”或分子电流。 在电场和磁场的理论中,洛伦兹(Lorentz)公式具有非常重要的意义,这个公式给出了一个运动中的电荷在电场和磁场中所受到的力的大小和方向。 磁场和电场有很多的相似点,但是它们有着根本的差别。 现代磁学理论中的主要概念包括: 磁场强度,磁感应强度,磁通量,磁化强度,磁矩,磁化率系数,磁势,磁阻,磁导等等。 磁材料(未完成) 除了古时已知道的磁铁矿和铁外,人们在两千多年中还没有发现其他具有强磁性的物质。发现钴(1733)和镍(1754)后不久就知道它们也像铁那样具有强磁性。至于一般的物质在较强磁场作用下能否多少表现一点磁性,则直到法拉第在老年时期才有系统的观察。英国工程师斯特金于1824年创制了电磁体,故那时实验室可有较强的磁场设备,但法拉第在需要高度稳定的磁场时仍用了大的永磁体。 法拉第测量了样品在不均匀磁场中被磁化时所受到的力,这个方法后来有了不少改进,至今仍广泛用于观测弱磁物质的磁化率,也用于观测铁等强磁物质的饱和磁化强度。 法拉第发现,一般的物质在较强磁场作用下都显示一定程度的磁性,只是除了极少数像铁那样的强磁性物质外,一般物质的磁化率的绝对值都是很小的。它们又可分为两类:一类物质的磁化率是负的,称之为抗磁性物质。这些物质在磁场中获得的磁矩方向与磁场方向相反,故在不均匀磁场中被推向磁场减弱的方向,即被磁场排斥;另一类物质的磁化率是正的,在不均匀磁场中被推向磁场增强的方向,即被磁场吸引,法拉第称它们为顺磁性物质。像铁那样强的磁性显然是特殊的,应另属一类,后来称为铁磁性。这样,在法拉第以后的近百年中,物质的磁性分三大类。 1895年,法国物理学家居里发表了他对三类物质的磁性的大量实验结果,他认为:抗磁体的磁化率不依赖于磁场强度且一般不依赖于温度;顺磁体的磁化率不依赖于磁场强度而与绝对温度成反比(这被称为居里定律);铁在某一温度(后被称为居里点)以上失去其强磁性。 19世纪30年代初,法国物理学家奈耳从理论上预言了反铁磁性,并在若干化合物的宏观磁性方面获得了实验证据。1948年他又对若干铁和其他金属的混合氧化物的磁性与铁磁性的区别作了详细的阐释,并称这类磁性为亚铁磁性。于是就有了五大类磁性。最近十多年来又有些学者提出了几种磁性的新名称,但这些都属于铁磁性的分支。 法国物理学家朗之万于1905年提出了抗磁性和顺磁性的经典理论,但十多年后范列文证明,朗之万理论中的某些假设不合于经典统计力学原理,及至原子结构的量子论模型兴起后,朗氏的假设又成为可允许的。今天对这两种磁化率的粗浅理论公式已经过量子力学的改正,但还保留着朗之万理论的基本形式。 磁学的内容 一个永磁体与另一个永磁体能够不接触而互相施加力,人们曾经称这样的现象为超距作用。近代的物理学家为了解释电荷之间的和永磁体之间的相互作用力引入了“场”的概念:在一个永磁体周围的空间中存在着一个磁场,使处于这空间中任何位置的另一个永磁体受到磁场所施加力的作用,同时第二个永磁体所产生的磁场也对第一个永磁体施加着反作用力。因为力是矢量,所以磁场是矢量场。许多实验事实都证明,磁场是真实的存在。 一块铁被一个永磁体吸一段时间以后,就被永磁体附近的较强的磁场所“磁化”,也成为一个永磁体了,有时也称磁化一个物体的作用力为“磁化力”。一般的铁块在从磁场较强的地方移到磁场很弱的地方就失掉其磁化了的状态称为“去磁”或“退磁”。容易磁化、也容易去磁的材料通称为软磁材料,成分近于纯铁的低碳钢就是一个例子;难于磁化、也不易去磁的材料通称为硬磁或永磁体材料,淬火了的、含碳和锰各约1%的铁就是最低级的硬磁材料。两个永磁体之间的相互作用也就是它们的磁极之间通过磁场的相互作用。 每一个永磁体都有两个性质不同的磁极,通常利用永磁体能指示南北方向,称指北的一极为N极,指南的一极为S极;同名极相斥,异名极相吸。 历史上曾把永磁体与带电物体相类比而设想磁极是由“磁荷”的分布形成的。不过,这完全是一种类比,实质上磁荷并不存在,而是作为一个等效物而引入的。磁极总是以异名的一对出现在同一磁体上,两个极从来不能分离而独立存在。把一条永磁棍截成两段,就会得到两个短一些的永磁棍,各段新形成的一端上出现一个与该段原有磁极异名的新磁极。 细而长的永磁棍的磁极与粗而短的永磁棍的相比,细永磁棍的磁场较为集中在棍端很小的区域内。对于距一个极足够远的点,该极近似于一个“点磁荷”。如果磁棍很长,两个极相距很远,则与被观察着的极比较,另一极所贡献的磁场可以被视为一小修正项。因此,用细长的永磁棍作样品,就可以对不同磁棍上的两个极的相互作用力进行精密的定量观测。 用细丝悬着的小永磁棍实质上是一个指南针。在四周没有磁性物体和电流的影响时,指南针的静止方位接近平行地理子午线,故有“指南”之称。地球两个磁极的中心各位于地理的南、北两极的附近。在静止位置,指南针北端的磁极称为“指北极”,简称“北极”,南端的为“指南极”,简称“南极”。按这定名法,在地理北极附近的地磁极是磁南极,而在地理南极附近的地磁极是磁北极。 磁针可以用于测定磁通量密度。在一磁场中,磁针在其平衡方向左右的小幅摆动(振荡)的周期是与磁通量的二次方根成反比的,故比较磁针分别在两个磁场中振荡的周期或频率即可求得两磁通量值之比。如磁针的磁矩和转动惯量是已知的,则可以一次测定磁通量的绝对值。 抗磁性的基本来源是电磁感应。电磁感应是法拉第的重大发现:围绕着随时间变化着的磁通量,有感应电动势(或即电场)产生,故能在导线电路中产生电流或在大块导体中产生涡流。这里感应电流所产生的磁场对感应起它们的磁场变化起着反抗作用,这就是楞次定律。 寻常导体中因有电阻,在稳恒磁场的建立过程中感应产生的电流很快被消耗掉,它们只有在瞬时,电磁感应对原子或分子内运动着的电子也有类似的作用。可见,一切物质都有一定的抗磁性,只因它很微弱,易被其他磁性所掩蔽。 显示抗磁性的物质的原子、离子或分子中的电子在基态都是成对的配合了的,它们的自旋磁矩和轨道磁矩各互相抵消。 超导电性材料在外磁场中被冷至其临界温度以下时,体内即产生电流,把体内磁通量全部排至体外,这就是迈斯纳效应。所以超导体也被称为完全的抗磁体。 顺磁性可粗分为强、弱和很弱三种,三者各有不同的来源。过渡金属,即周期表中铁、钯、稀土铂、铀等元素的化合物(主要是盐类)的晶体或溶液大多表现强顺磁性,其明显的特点是磁化率较强地依赖于温度。 铁磁性物质的最明显的特点是易于磁化,它的磁化率比强顺磁物质要高几个数量级,并随磁场强度而变。磁化强度有饱和现象,即在一定温度下达到某强度时有不再随磁场的增强而增的趋势。 铁磁材料在不很强的磁场范围的磁性观测一般不用法拉第、居里等方法而用感应法。现代化的振动样品磁强计等在原理上也属于感应法。 温度对铁磁性的影响很大。铁的强磁性随温度上升而减弱,这一转变温度时消失。这转变温度后来被称为居里温度或居里点。纯铁的居里点为1043K。 其它电学分支学科 磁学、电学、电动力学 其它物理学分支学科 物理学概览、力学、热学、光学、声学、电磁学、核物理学、固体物理学 看看这个http://d.wanfangdata.com.cn/Periodical_hxtb2200310031.aspx |

2楼2009-04-03 13:39:46
★ ★ ★ ★ ★ ★ ★ ★ ★ ★
hechun_2227865(金币+10,VIP+0):仍然谢谢你,可能是我问的太偏僻了吧 4-3 14:10
hechun_2227865(金币+10,VIP+0):仍然谢谢你,可能是我问的太偏僻了吧 4-3 14:10
|
、双交换相互作用:以氧离子作为中间媒介,两个不同价态的过渡族离子间的交换相互作用。例如LaCaMnO3中Mn离子有二个价态Mn3+和Mn4+,此时与超交换作用不同;氧离子的一个p电子进入Mn4+中,该Mn4+离子变为Mn3+;在氧离子另外一边的Mn3+离子中的一个电子交换到氧原子的p电子轨道,这样Mn3+离子变为Mn4+。由于Mn4+离子中的电子是未半满(n<5),跳入到Mn4+的电子自旋与Mn4+离子的电子自旋平行耦合;而从Mn3+(电子填充也是未半满)离子跳入氧原子p轨道电子自旋与跳到Mn4+离子的电子自旋方向必然是相同的;因此Mn3+离子的电子通过氧原子作为中间媒介跳入到Mn4+离子,使Mn3+离子与Mn4+离子间呈铁磁性耦合。 你再查查他的文献 中科院物理研究所硕士生导师介绍:孙阳 中科院物理研究所硕士生导师介绍:孙阳 简历:男,1974年1月生。1996年毕业于中国科学技术大学物理系,获学士学位。2001年获中国科学技术大学理学博士学位。2001年至2004年在美国University of Illinois at Urbana-Champaign 及Rice University作博士后。2004年入选中国科学院“百人计划”。现为中国科学院物理研究所研究员,博士生导师。 主要研究方向: (1)强关联电子体系中的超大磁电阻效应及其复杂的物理相图; (2)多铁性材料与多场耦合效应; (3)超导体/铁磁体异质结构的磁性及电输运性质; (4)微磁学与磁性纳米结构; 过去的主要工作及获得的成果:首次实验研究了无序分布的磁性纳米颗粒列阵与超导体之间的相互作用,发现了一系列新奇的的实验现象。发现相互作用磁性纳米颗粒中的记忆效应,表明磁性纳米颗粒间的相互作用及任意磁各向异性可以导致“类自旋玻璃态”。发现窄能隙半导体中的巨磁热电势效应,支持了Abrokosov的线性量子磁电阻理论。系统研究了钙钛矿结构氧化物中元素替代效应。提出并实验证明异类元素之间也可能存在双交换相互作用。已发表SCI收录的研究论文30余篇。其中Phys.Rev.Lett. 2篇,Appl.Phys.Lett. 6 篇,Phys.Rev.B 11篇。博士论文被授予2002年“全国优秀博士论文”荣誉称号。现为Phys.Rev.Lett.,Phys.Rev.B,Chin.Phys.Lett. 等著名学术期刊审稿人 . |
3楼2009-04-03 13:44:18












回复此楼