| 查看: 285 | 回复: 0 | ||
[求助]
集合论 序关系求问
|
|
命题:如果存在一个映射,使得集合A与集合B中的元素一一对应;假设P1是建立在A上的一个全序关系,P2是建立在B上的一个全序关系;那么,一定有一个A到B的一一对应的映射,使得,若x小于等于y,则x在B中的像小于等于y在B中的像。 请问这个命题对么?这个命题是否与良序公理矛盾?如果这个命题不成立,能否不通过良序公理证明这个命题不成立?能否用这个命题替代良序公理? 如果这个命题成立,那么对于实数集上任意一个全序关系,都可以找到一个保序映射使得其对应于常规的实数全序,而常规的实数全序显然不满足良序公理。 |
» 猜你喜欢
酰胺脱乙酰基
已经有9人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有3人回复
CSC & MSCA 博洛尼亚大学能源材料课题组博士/博士后招生|MSCA经费充足、排名优
已经有5人回复
有70后还继续奋斗在职场上的吗?
已经有6人回复
博士延得我,科研能力直往上蹿
已经有7人回复
退学或坚持读
已经有27人回复
面上基金申报没有其他的参与者成吗
已经有5人回复
遇见不省心的家人很难过
已经有22人回复













回复此楼