24小时热门版块排行榜    

查看: 1712  |  回复: 27
【奖励】 本帖被评价26次,作者lutetium增加金币 20.8

lutetium

铁杆木虫 (小有名气)


[资源] 美能源部BMR(Battery Materials Research)项目最新季度报告(更新到第三季度)

看到木虫里,BMR项目的季度报告,最新的是2017年第一季度。现将找到的第二、第三季度报告分享给大家。
第一季度报告的分享帖子:http://muchong.com/t-11259541-1

第二季度的报告目录:
TABLE OF CONTENTS
A Message from the Advanced Battery Materials Research Program Manager ...................................................xv
Task 1 – Advanced Electrode Architectures .............................................................................................................1
Task 1.1 – Thermally Enhanced Lithium-Ion Cell Using Chemical Functionalization
(Ravi Prasher and Vincent Battaglia, Lawrence Berkeley National Laboratory) .................................. 2
Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries
(Yi Cui, Stanford University) ..................................................................................................................4
Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes
(Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7
Task 1.4 – Design and Scalable Assembly of High-Density, Low-Tortuosity Electrodes
(Yet-Ming Chiang, Massachusetts Institute of Technology) ................................................................. 9
Task 2 – Silicon Anode Research .............................................................................................................................11
Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes
(Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................12
Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries
(Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta,
University of Pittsburgh) ..................................................................................................................... 14
Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................17
Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda,
Oak Ridge National Laboratory)......................................................................................................... 18
Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................21
Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng,
Pacific Northwest National Laboratory) ...............................................................................................24
Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and
Jianming Bai, Brookhaven National Laboratory) ................................................................................ 27
Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and
Jason R. Croy, Argonne National Laboratory) ................................................................................... 30
Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff,
Lawrence Berkeley National Laboratory) ........................................................................................... 33
Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley
National Laboratory) ...........................................................................................................................36
Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes
(Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 39
Table of Contents
BMR Quarterly Report ii FY 2017 ‒ Q2 (v. 8 Aug 2017)
Task 4 – Electrolytes .................................................................................................................................................41
Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte
(Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43
Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte
(Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 46
Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity
Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University
of Washington) .................................................................................................................................. 48
Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick)
Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 52
Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman,
Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 55
Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured
High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57
Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and
Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 58
Task 5 – Diagnostics .................................................................................................................................................61
Task 5.1 – Model System Diagnostics for High-Energy Cathode Development
(Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 62
Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley
National Laboratory) .......................................................................................................................... 65
Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and
Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 67
Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid
Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey,
University of Cambridge).................................................................................................................... 70
Task 5.5 – Optimization of Ion Transport in High-Energy Composite Cathodes (Shirley Meng,
University of California – San Diego) ................................................................................................. 73
Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid
Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao,
General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State
University; and Y. T. Cheng, University of Kentucky)......................................................................... 76
Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials
(Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 79
Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes
(Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 82
Task 5.9 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-Electrolyte
Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California
San Diego) ......................................................................................................................................... 84
Table of Contents
BMR Quarterly Report iii FY 2017 ‒ Q2 (v. 8 Aug 2017)
Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 86
Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles
(Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................87
Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes
(Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................89
Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion
Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee,
Texas A&M University).......................................................................................................................91
Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified
Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 94
Task 6.5 – A Combined Experimental and Modeling Approach for the Design of High Current
Efficiency Silicon Electrodes (Xingcheng Xiao, General Motors, and Yue Qi, Michigan
State University) ............................................................................................................................... 97
Task 6.6 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National
Laboratory) ....................................................................................................................................... 100
Task 6.7 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder,
Lawrence Berkeley National Laboratory) ..........................................................................................102
Task 6.8 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes
(Yue Qi, Michigan State University) ..................................................................................................104
Task 7 – Metallic Lithium and Solid Electrolytes .................................................................................................. 106
Task 7.1 – Mechanical Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge
National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto,
University of Michigan) ......................................................................................................................108
Task 7.2 – Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries (Jeff Sakamoto,
University of Michigan) ......................................................................................................................111
Task 7.3 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and
Frank Delnick, Oak Ridge National Laboratory) ................................................................................114
Task 7.4 – Overcoming Interfacial Impedance in Solid-State Batteries (Eric Wachsman,
Liangbing Hu, and Yifei Mo, University of Maryland, College Park) ..................................................117
Task 7.5 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes
(Yi Cui, Stanford University) ..............................................................................................................119
Task 7.6 – Lithium Dendrite Suppression for Lithium-Ion Batteries (Wu Xu and Ji-Guang Zhang,
Pacific Northwest National Laboratory) .............................................................................................122
Task 7.7 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough,
University of Texas – Austin) ............................................................................................................125
Task 7.8 – Advancing Solid State Interfaces in Lithium-Ion Batteries (Nenad Markovic and
Larry A. Curtiss, Argonne National Laboratory) ................................................................................127
Task 7.9 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta,
University of Pittsburgh) ....................................................................................................................129
Task 7.10 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries
(Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan,
Carnegie Mellon University) ..............................................................................................................132
Table of Contents
BMR Quarterly Report iv FY 2017 ‒ Q2 (v. 8 Aug 2017)
Task 8 – Lithium–Sulfur Batteries ..........................................................................................................................134
Task 8.1 – New Lamination and Doping Concepts for Enhanced Lithium–Sulfur Battery
Performance (Prashant N. Kumta, University of Pittsburgh) .............................................................136
Task 8.2 – Simulations and X-Ray Spectroscopy of Lithium–Sulfur Chemistry (Nitash Balsara,
Lawrence Berkeley National Laboratory) ..........................................................................................139
Task 8.3 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne
National Laboratory) .........................................................................................................................142
Task 8.4 – Multi-Functional Cathode Additives for Lithium-Sulfur Battery Technology
(Hong Gan, Brookhaven National Laboratory, and Co-PI Esther Takeuchi,
Brookhaven National Laboratory and Stony Brook University) .........................................................145
Task 8.5 – Development of High-Energy Lithium–Sulfur Batteries (Jun Liu and Dongping Lu,
Pacific Northwest National Laboratory) .............................................................................................148
Task 8.6 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries
(Yi Cui, Stanford University) ..............................................................................................................151
Task 8.7 – Addressing Internal “Shuttle” Effect: Electrolyte Design and Cathode Morphology
Evolution in Lithium-Sulfur Batteries (Perla Balbuena, Texas A&M University) ................................154
Task 8.8 – Investigation of Sulfur Reaction Mechanisms (Deyang Qu, University of Wisconsin -
Milwaukee; Xiao-Qing Yang, Brookhaven National Laboratory) ......................................................157
Task 8.9 – Statically and Dynamically Stable Lithium–Sulfur Batteries
(Arumugam Manthiram, U Texas Austin) ..........................................................................................160
Task 8.10 – Electrochemically Responsive, Self-Formed Lithium-Ion Conductors for High-
Performance Lithium-Metal Anodes (Donghai Wang, Pennsylvania State University) .....................163
Task 9 – Lithium-Air Batteries ................................................................................................................................166
Task 9.1 – Rechargeable Lithium–Air Batteries (Ji-Guang Zhang and Wu Xu,
Pacific Northwest National Laboratory) .............................................................................................167
Task 9.2 – Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes
(Vincent Giordani, Liox) ....................................................................................................................170
Task 9.3 – Lithium–Air Batteries (Khalil Amine and Larry A. Curtiss, Argonne National Laboratory)..................172
Task 10 – Sodium-Ion Batteries ..............................................................................................................................175
Task 10.1 – Exploratory Studies of Novel Sodium-Ion Battery Systems (Xiao-Qing Yang and
Seongmin Bak, Brookhaven National Laboratory) ............................................................................176


第三季度的报告目录:
TABLE OF CONTENTS
A Message from the Advanced Battery Materials Research Program Manager ...................................................xv
Task 1 – Advanced Electrode Architectures .............................................................................................................1
Task 1.1 – Higher Energy Density via Inactive Components and Processing Conditions
(Vincent Battaglia, Lawrence Berkeley National Laboratory) ............................................................... 2
Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries
(Yi Cui, Stanford University) ..................................................................................................................4
Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes
(Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7
Task 2 – Silicon Anode Research ...............................................................................................................................9
Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes
(Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................10
Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries
(Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta,
University of Pittsburgh) ..................................................................................................................... 13
Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................16
Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda,
Oak Ridge National Laboratory)......................................................................................................... 17
Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................20
Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng,
Pacific Northwest National Laboratory) ...............................................................................................23
Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and
Jianming Bai, Brookhaven National Laboratory) ................................................................................ 26
Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and
Jason R. Croy, Argonne National Laboratory) ................................................................................... 29
Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff,
Lawrence Berkeley National Laboratory) ........................................................................................... 32
Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley
National Laboratory) ......................................................................................................................... 35
Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes
(Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 38
Task 4 – Electrolytes .................................................................................................................................................41
Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte
(Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43
Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte
(Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 45
Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity
Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University
of Washington) .................................................................................................................................. 48
Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick)
Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 51
Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman,
Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 54
Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured
High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57
Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and
Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 59
Task 5 – Diagnostics .................................................................................................................................................62
Task 5.1 – Model System Diagnostics for High-Energy Cathode Development
(Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 63
Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley
National Laboratory) .......................................................................................................................... 66
Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and
Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 69
Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid
Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey,
University of Cambridge).................................................................................................................... 72
Task 5.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-
Electrolyte Interphases in High-Energy Lithium Batteries
(Shirley Meng, University of California – San Diego) ........................................................................ 75
Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid
Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao,
General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State
University; and Y. T. Cheng, University of Kentucky)......................................................................... 78
Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials
(Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 82
Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes
(Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 85
Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 88
Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles
(Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................89
Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes
(Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................91
Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion
Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee,
Texas A&M University).......................................................................................................................94
Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified
Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 97
Task 6.5 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National
Laboratory) ....................................................................................................................................... 100
Task 6.6 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder,
Lawrence Berkeley National Laboratory) ..........................................................................................103
Task 6.7 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes
(Yue Qi, Michigan State University) ..................................................................................................105
Task 6.8 – First Principles Modeling and Design of Solid-State Interfaces for the Protection and
Use of Li-Metal Anodes (Gerbrand Ceder, UC Berkeley) ..................................................................108
Task 7 – Metallic Lithium and Solid Electrolytes .................................................................................................. 110
Task 7.1 – Mechanical Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge
National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto,
University of Michigan) ......................................................................................................................112
Task 7.2 – Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries (Jeff Sakamoto,
University of Michigan) ......................................................................................................................115
Task 7.3 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and
Frank Delnick, Oak Ridge National Laboratory) ................................................................................118
Task 7.4 – Overcoming Interfacial Impedance in Solid-State Batteries (Eric Wachsman,
Liangbing Hu, and Yifei Mo, University of Maryland, College Park) ..................................................121
Task 7.5 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes
(Yi Cui, Stanford University) ..............................................................................................................124
Task 7.6 – Lithium Dendrite Prevention for Lithium-Ion Batteries (Wu Xu and Ji-Guang Zhang,
Pacific Northwest National Laboratory) .............................................................................................127
Task 7.7 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough,
University of Texas – Austin) ............................................................................................................130
Task 7.8 – Advancing Solid State Interfaces in Lithium-Ion Batteries (Nenad Markovic and
Larry A. Curtiss, Argonne National Laboratory) ................................................................................133
Task 7.9 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta,
University of Pittsburgh) ....................................................................................................................135
Task 7.10 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries
(Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan,
Carnegie Mellon University) ..............................................................................................................138
Task 8 – Lithium–Sulfur Batteries ..........................................................................................................................141
Task 8.1 – New Lamination and Doping Concepts for Enhanced Lithium–Sulfur Battery
Performance (Prashant N. Kumta, University of Pittsburgh) .............................................................143
Task 8.2 – Simulations and X-Ray Spectroscopy of Lithium–Sulfur Chemistry (Nitash Balsara,
Lawrence Berkeley National Laboratory) ..........................................................................................146
Task 8.3 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne
National Laboratory) .........................................................................................................................149
Task 8.4 – Multi-Functional Cathode Additives for Lithium-Sulfur Battery Technology
(Hong Gan, Brookhaven National Laboratory, and Co-PI Esther Takeuchi,
Brookhaven National Laboratory and Stony Brook University) .........................................................152
Task 8.5 – Development of High-Energy Lithium–Sulfur Batteries (Jun Liu and Dongping Lu,
Pacific Northwest National Laboratory) .............................................................................................155
Task 8.6 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries
(Yi Cui, Stanford University) ..............................................................................................................158
Task 8.7 – Addressing Internal “Shuttle” Effect: Electrolyte Design and Cathode Morphology
Evolution in Lithium-Sulfur Batteries (Perla Balbuena, Texas A&M University) ................................160
Task 8.8 – Investigation of Sulfur Reaction Mechanisms (Deyang Qu, University of Wisconsin -
Milwaukee; Xiao-Qing Yang, Brookhaven National Laboratory) ......................................................163
Task 8.9 – Statically and Dynamically Stable Lithium–Sulfur Batteries
(Arumugam Manthiram, U Texas Austin) ..........................................................................................166
Task 8.10 – Electrochemically Responsive, Self-Formed Lithium-Ion Conductors for High-
Performance Lithium-Metal Anodes (Donghai Wang, Pennsylvania State University) ...................169
Task 9 – Lithium-Air Batteries ................................................................................................................................171
Task 9.1 – Rechargeable Lithium–Air Batteries (Ji-Guang Zhang and Wu Xu,
Pacific Northwest National Laboratory) .............................................................................................172
Task 9.2 – Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes
(Vincent Giordani, Liox) ....................................................................................................................175
Task 9.3 – Lithium–Air Batteries (Khalil Amine and Larry A. Curtiss, Argonne National Laboratory)..................177
Task 10 – Sodium-Ion Batteries ..............................................................................................................................180
Task 10.1 – Exploratory Studies of Novel Sodium-Ion Battery Systems (Xiao-Qing Yang and
Seongmin Bak, Brookhaven National Laboratory) ..........................................................................181
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : BMR-2017-2Q-FY17_Rev-aug-8.pdf
  • 2017-10-18 13:31:08, 5.91 M
  • 附件 2 : BMR-2017-3Q-FY17_Final_-Sep-15.pdf
  • 2017-10-18 13:31:12, 5.05 M

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
lwg32楼
2017-10-18 15:12   回复  
五星好评  顶一下,感谢分享!
jyhustb3楼
2017-10-20 22:06   回复  
五星好评  顶一下,感谢分享!
anwhua4楼
2017-10-21 11:14   回复  
五星好评  顶一下,感谢分享!
ouyangjie5楼
2017-10-22 10:30   回复  
五星好评  顶一下,感谢分享!
nidan106楼
2017-10-26 10:56   回复  
五星好评  顶一下,感谢分享!
linianwu7楼
2017-11-15 10:34   回复  
五星好评  顶一下,感谢分享!
2017-11-15 17:18   回复  
五星好评  顶一下,感谢分享!
qwcnbwj9楼
2018-01-01 20:37   回复  
五星好评  顶一下,感谢分享!
tomkk8810楼
2018-01-02 16:46   回复  
五星好评  顶一下,感谢分享!
wangketoo11楼
2018-01-03 17:49   回复  
五星好评  顶一下,感谢分享!
2018-02-07 15:43   回复  
五星好评  顶一下,感谢分享!
xiewuhua13楼
2018-02-27 17:44   回复  
五星好评  顶一下,感谢分享!
麦田wz14楼
2018-03-26 08:59   回复  
五星好评  顶一下,感谢分享!
2018-05-05 16:58   回复  
五星好评  顶一下,感谢分享!
whp383843816楼
2018-10-18 14:12   回复  
五星好评  顶一下,感谢分享!
chem1111117楼
2018-10-21 20:12   回复  
五星好评  顶一下,感谢分享!
nlynlynly18楼
2018-10-23 09:50   回复  
五星好评  顶一下,感谢分享!
atlas041219楼
2019-02-04 10:01   回复  
五星好评  顶一下,感谢分享!
hbltwhti20楼
2019-04-01 22:47   回复  
五星好评  顶一下,感谢分享!
2019-10-09 09:34   回复  
五星好评  顶一下,感谢分享!
schumikimi22楼
2019-10-23 10:42   回复  
五星好评  顶一下,感谢分享!
schumikimi23楼
2019-10-23 10:43   回复  
顶一下,感谢分享!
2019-10-27 23:07   回复  
五星好评  顶一下,感谢分享!
渡渡虫25楼
2019-12-18 16:08   回复  
五星好评  顶一下,感谢分享!
2020-07-22 21:29   回复  
五星好评  顶一下,感谢分享!
xinmu198327楼
2020-07-23 21:24   回复  
五星好评  顶一下,感谢分享!
zrSisyphos28楼
2022-01-13 09:08   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 lutetium 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见