| 查看: 1712 | 回复: 27 | ||
| 【奖励】 本帖被评价26次,作者lutetium增加金币 20.8 个 | ||
[资源]
美能源部BMR(Battery Materials Research)项目最新季度报告(更新到第三季度)
|
||
|
看到木虫里,BMR项目的季度报告,最新的是2017年第一季度。现将找到的第二、第三季度报告分享给大家。 第一季度报告的分享帖子:http://muchong.com/t-11259541-1 第二季度的报告目录: TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ...................................................xv Task 1 – Advanced Electrode Architectures .............................................................................................................1 Task 1.1 – Thermally Enhanced Lithium-Ion Cell Using Chemical Functionalization (Ravi Prasher and Vincent Battaglia, Lawrence Berkeley National Laboratory) .................................. 2 Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries (Yi Cui, Stanford University) ..................................................................................................................4 Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes (Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7 Task 1.4 – Design and Scalable Assembly of High-Density, Low-Tortuosity Electrodes (Yet-Ming Chiang, Massachusetts Institute of Technology) ................................................................. 9 Task 2 – Silicon Anode Research .............................................................................................................................11 Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes (Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................12 Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries (Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta, University of Pittsburgh) ..................................................................................................................... 14 Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................17 Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda, Oak Ridge National Laboratory)......................................................................................................... 18 Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................21 Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng, Pacific Northwest National Laboratory) ...............................................................................................24 Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and Jianming Bai, Brookhaven National Laboratory) ................................................................................ 27 Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ................................................................................... 30 Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff, Lawrence Berkeley National Laboratory) ........................................................................................... 33 Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley National Laboratory) ...........................................................................................................................36 Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 39 Table of Contents BMR Quarterly Report ii FY 2017 ‒ Q2 (v. 8 Aug 2017) Task 4 – Electrolytes .................................................................................................................................................41 Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43 Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 46 Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) .................................................................................................................................. 48 Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 52 Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 55 Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57 Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 58 Task 5 – Diagnostics .................................................................................................................................................61 Task 5.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 62 Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) .......................................................................................................................... 65 Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 67 Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge).................................................................................................................... 70 Task 5.5 – Optimization of Ion Transport in High-Energy Composite Cathodes (Shirley Meng, University of California – San Diego) ................................................................................................. 73 Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky)......................................................................... 76 Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 79 Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 82 Task 5.9 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California San Diego) ......................................................................................................................................... 84 Table of Contents BMR Quarterly Report iii FY 2017 ‒ Q2 (v. 8 Aug 2017) Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 86 Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles (Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................87 Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................89 Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee, Texas A&M University).......................................................................................................................91 Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 94 Task 6.5 – A Combined Experimental and Modeling Approach for the Design of High Current Efficiency Silicon Electrodes (Xingcheng Xiao, General Motors, and Yue Qi, Michigan State University) ............................................................................................................................... 97 Task 6.6 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) ....................................................................................................................................... 100 Task 6.7 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ..........................................................................................102 Task 6.8 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State University) ..................................................................................................104 Task 7 – Metallic Lithium and Solid Electrolytes .................................................................................................. 106 Task 7.1 – Mechanical Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto, University of Michigan) ......................................................................................................................108 Task 7.2 – Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries (Jeff Sakamoto, University of Michigan) ......................................................................................................................111 Task 7.3 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and Frank Delnick, Oak Ridge National Laboratory) ................................................................................114 Task 7.4 – Overcoming Interfacial Impedance in Solid-State Batteries (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland, College Park) ..................................................117 Task 7.5 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes (Yi Cui, Stanford University) ..............................................................................................................119 Task 7.6 – Lithium Dendrite Suppression for Lithium-Ion Batteries (Wu Xu and Ji-Guang Zhang, Pacific Northwest National Laboratory) .............................................................................................122 Task 7.7 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough, University of Texas – Austin) ............................................................................................................125 Task 7.8 – Advancing Solid State Interfaces in Lithium-Ion Batteries (Nenad Markovic and Larry A. Curtiss, Argonne National Laboratory) ................................................................................127 Task 7.9 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta, University of Pittsburgh) ....................................................................................................................129 Task 7.10 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries (Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan, Carnegie Mellon University) ..............................................................................................................132 Table of Contents BMR Quarterly Report iv FY 2017 ‒ Q2 (v. 8 Aug 2017) Task 8 – Lithium–Sulfur Batteries ..........................................................................................................................134 Task 8.1 – New Lamination and Doping Concepts for Enhanced Lithium–Sulfur Battery Performance (Prashant N. Kumta, University of Pittsburgh) .............................................................136 Task 8.2 – Simulations and X-Ray Spectroscopy of Lithium–Sulfur Chemistry (Nitash Balsara, Lawrence Berkeley National Laboratory) ..........................................................................................139 Task 8.3 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne National Laboratory) .........................................................................................................................142 Task 8.4 – Multi-Functional Cathode Additives for Lithium-Sulfur Battery Technology (Hong Gan, Brookhaven National Laboratory, and Co-PI Esther Takeuchi, Brookhaven National Laboratory and Stony Brook University) .........................................................145 Task 8.5 – Development of High-Energy Lithium–Sulfur Batteries (Jun Liu and Dongping Lu, Pacific Northwest National Laboratory) .............................................................................................148 Task 8.6 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries (Yi Cui, Stanford University) ..............................................................................................................151 Task 8.7 – Addressing Internal “Shuttle” Effect: Electrolyte Design and Cathode Morphology Evolution in Lithium-Sulfur Batteries (Perla Balbuena, Texas A&M University) ................................154 Task 8.8 – Investigation of Sulfur Reaction Mechanisms (Deyang Qu, University of Wisconsin - Milwaukee; Xiao-Qing Yang, Brookhaven National Laboratory) ......................................................157 Task 8.9 – Statically and Dynamically Stable Lithium–Sulfur Batteries (Arumugam Manthiram, U Texas Austin) ..........................................................................................160 Task 8.10 – Electrochemically Responsive, Self-Formed Lithium-Ion Conductors for High- Performance Lithium-Metal Anodes (Donghai Wang, Pennsylvania State University) .....................163 Task 9 – Lithium-Air Batteries ................................................................................................................................166 Task 9.1 – Rechargeable Lithium–Air Batteries (Ji-Guang Zhang and Wu Xu, Pacific Northwest National Laboratory) .............................................................................................167 Task 9.2 – Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes (Vincent Giordani, Liox) ....................................................................................................................170 Task 9.3 – Lithium–Air Batteries (Khalil Amine and Larry A. Curtiss, Argonne National Laboratory)..................172 Task 10 – Sodium-Ion Batteries ..............................................................................................................................175 Task 10.1 – Exploratory Studies of Novel Sodium-Ion Battery Systems (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ............................................................................176 第三季度的报告目录: TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ...................................................xv Task 1 – Advanced Electrode Architectures .............................................................................................................1 Task 1.1 – Higher Energy Density via Inactive Components and Processing Conditions (Vincent Battaglia, Lawrence Berkeley National Laboratory) ............................................................... 2 Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries (Yi Cui, Stanford University) ..................................................................................................................4 Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes (Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7 Task 2 – Silicon Anode Research ...............................................................................................................................9 Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes (Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................10 Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries (Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta, University of Pittsburgh) ..................................................................................................................... 13 Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................16 Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda, Oak Ridge National Laboratory)......................................................................................................... 17 Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................20 Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng, Pacific Northwest National Laboratory) ...............................................................................................23 Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and Jianming Bai, Brookhaven National Laboratory) ................................................................................ 26 Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ................................................................................... 29 Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff, Lawrence Berkeley National Laboratory) ........................................................................................... 32 Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley National Laboratory) ......................................................................................................................... 35 Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 38 Task 4 – Electrolytes .................................................................................................................................................41 Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43 Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 45 Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) .................................................................................................................................. 48 Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 51 Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 54 Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57 Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 59 Task 5 – Diagnostics .................................................................................................................................................62 Task 5.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 63 Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) .......................................................................................................................... 66 Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 69 Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge).................................................................................................................... 72 Task 5.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode- Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California – San Diego) ........................................................................ 75 Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky)......................................................................... 78 Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 82 Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 85 Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 88 Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles (Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................89 Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................91 Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee, Texas A&M University).......................................................................................................................94 Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 97 Task 6.5 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) ....................................................................................................................................... 100 Task 6.6 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ..........................................................................................103 Task 6.7 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State University) ..................................................................................................105 Task 6.8 – First Principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Li-Metal Anodes (Gerbrand Ceder, UC Berkeley) ..................................................................108 Task 7 – Metallic Lithium and Solid Electrolytes .................................................................................................. 110 Task 7.1 – Mechanical Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto, University of Michigan) ......................................................................................................................112 Task 7.2 – Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries (Jeff Sakamoto, University of Michigan) ......................................................................................................................115 Task 7.3 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and Frank Delnick, Oak Ridge National Laboratory) ................................................................................118 Task 7.4 – Overcoming Interfacial Impedance in Solid-State Batteries (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland, College Park) ..................................................121 Task 7.5 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes (Yi Cui, Stanford University) ..............................................................................................................124 Task 7.6 – Lithium Dendrite Prevention for Lithium-Ion Batteries (Wu Xu and Ji-Guang Zhang, Pacific Northwest National Laboratory) .............................................................................................127 Task 7.7 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough, University of Texas – Austin) ............................................................................................................130 Task 7.8 – Advancing Solid State Interfaces in Lithium-Ion Batteries (Nenad Markovic and Larry A. Curtiss, Argonne National Laboratory) ................................................................................133 Task 7.9 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta, University of Pittsburgh) ....................................................................................................................135 Task 7.10 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries (Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan, Carnegie Mellon University) ..............................................................................................................138 Task 8 – Lithium–Sulfur Batteries ..........................................................................................................................141 Task 8.1 – New Lamination and Doping Concepts for Enhanced Lithium–Sulfur Battery Performance (Prashant N. Kumta, University of Pittsburgh) .............................................................143 Task 8.2 – Simulations and X-Ray Spectroscopy of Lithium–Sulfur Chemistry (Nitash Balsara, Lawrence Berkeley National Laboratory) ..........................................................................................146 Task 8.3 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne National Laboratory) .........................................................................................................................149 Task 8.4 – Multi-Functional Cathode Additives for Lithium-Sulfur Battery Technology (Hong Gan, Brookhaven National Laboratory, and Co-PI Esther Takeuchi, Brookhaven National Laboratory and Stony Brook University) .........................................................152 Task 8.5 – Development of High-Energy Lithium–Sulfur Batteries (Jun Liu and Dongping Lu, Pacific Northwest National Laboratory) .............................................................................................155 Task 8.6 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries (Yi Cui, Stanford University) ..............................................................................................................158 Task 8.7 – Addressing Internal “Shuttle” Effect: Electrolyte Design and Cathode Morphology Evolution in Lithium-Sulfur Batteries (Perla Balbuena, Texas A&M University) ................................160 Task 8.8 – Investigation of Sulfur Reaction Mechanisms (Deyang Qu, University of Wisconsin - Milwaukee; Xiao-Qing Yang, Brookhaven National Laboratory) ......................................................163 Task 8.9 – Statically and Dynamically Stable Lithium–Sulfur Batteries (Arumugam Manthiram, U Texas Austin) ..........................................................................................166 Task 8.10 – Electrochemically Responsive, Self-Formed Lithium-Ion Conductors for High- Performance Lithium-Metal Anodes (Donghai Wang, Pennsylvania State University) ...................169 Task 9 – Lithium-Air Batteries ................................................................................................................................171 Task 9.1 – Rechargeable Lithium–Air Batteries (Ji-Guang Zhang and Wu Xu, Pacific Northwest National Laboratory) .............................................................................................172 Task 9.2 – Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes (Vincent Giordani, Liox) ....................................................................................................................175 Task 9.3 – Lithium–Air Batteries (Khalil Amine and Larry A. Curtiss, Argonne National Laboratory)..................177 Task 10 – Sodium-Ion Batteries ..............................................................................................................................180 Task 10.1 – Exploratory Studies of Novel Sodium-Ion Battery Systems (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ..........................................................................181 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : BMR-2017-2Q-FY17_Rev-aug-8.pdf
- 附件 2 : BMR-2017-3Q-FY17_Final_-Sep-15.pdf
2017-10-18 13:31:08, 5.91 M
2017-10-18 13:31:12, 5.05 M
» 猜你喜欢
推荐给教师的一本单词书《金鱼单词讲义:从26个拉丁字母到106万个英语单词》
已经有33人回复
核磁分析软件MestReNova打开文件时报错
已经有0人回复
物理化学论文润色/翻译怎么收费?
已经有185人回复
在职博后不能申请博后基金了,那么在职博后意义何在?
已经有2人回复
青岛大学化学化工学院分子测量学研究院2026年招收博士研究生
已经有0人回复
香港科技大学(广州)诚招电催化方向博士生(2026秋入学)
已经有0人回复
求助Cu2+1O的CIF文件(PDF: 05-0667)
已经有1人回复
KAUST(阿卜杜拉国王科技大学)MXene 器件方向博士后招聘
已经有0人回复
沙特阿拉伯阿卜杜拉国王科技大学(KAUST)电池方向博士后招聘
已经有0人回复
简单回复
lwg32楼
2017-10-18 15:12
回复
五星好评 顶一下,感谢分享!
jyhustb3楼
2017-10-20 22:06
回复
五星好评 顶一下,感谢分享!
anwhua4楼
2017-10-21 11:14
回复
五星好评 顶一下,感谢分享!
2017-10-22 10:30
回复
五星好评 顶一下,感谢分享!
nidan106楼
2017-10-26 10:56
回复
五星好评 顶一下,感谢分享!
linianwu7楼
2017-11-15 10:34
回复
五星好评 顶一下,感谢分享!
2017-11-15 17:18
回复
五星好评 顶一下,感谢分享!
qwcnbwj9楼
2018-01-01 20:37
回复
五星好评 顶一下,感谢分享!
tomkk8810楼
2018-01-02 16:46
回复
五星好评 顶一下,感谢分享!
wangketoo11楼
2018-01-03 17:49
回复
五星好评 顶一下,感谢分享!
金龙飞腾12楼
2018-02-07 15:43
回复
五星好评 顶一下,感谢分享!
xiewuhua13楼
2018-02-27 17:44
回复
五星好评 顶一下,感谢分享!
麦田wz14楼
2018-03-26 08:59
回复
五星好评 顶一下,感谢分享!
CHUANSHUIRU15楼
2018-05-05 16:58
回复
五星好评 顶一下,感谢分享!
whp383843816楼
2018-10-18 14:12
回复
五星好评 顶一下,感谢分享!
chem1111117楼
2018-10-21 20:12
回复
五星好评 顶一下,感谢分享!
nlynlynly18楼
2018-10-23 09:50
回复
五星好评 顶一下,感谢分享!
atlas041219楼
2019-02-04 10:01
回复
五星好评 顶一下,感谢分享!
hbltwhti20楼
2019-04-01 22:47
回复
五星好评 顶一下,感谢分享!
清远常山21楼
2019-10-09 09:34
回复
五星好评 顶一下,感谢分享!
schumikimi22楼
2019-10-23 10:42
回复
五星好评 顶一下,感谢分享!
schumikimi23楼
2019-10-23 10:43
回复
顶一下,感谢分享!
2019-10-27 23:07
回复
五星好评 顶一下,感谢分享!
渡渡虫25楼
2019-12-18 16:08
回复
五星好评 顶一下,感谢分享!
涂涂大文26楼
2020-07-22 21:29
回复
五星好评 顶一下,感谢分享!
xinmu198327楼
2020-07-23 21:24
回复
五星好评 顶一下,感谢分享!
zrSisyphos28楼
2022-01-13 09:08
回复
五星好评 顶一下,感谢分享!












回复此楼