24小时热门版块排行榜    

查看: 1024  |  回复: 4

星座起源

新虫 (小有名气)

[求助] 关于极坐标条件下内边界条件及无穷大外边界条件的处理 已有1人参与

如图所示的数学模型。泛定方程可以建立差分格式,而内外边界条件该怎么处理?r趋近于0和无穷分别该怎么处理?谢谢!

关于极坐标条件下内边界条件及无穷大外边界条件的处理
1.png
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

whyhow

铁杆木虫 (著名写手)

带你飞翔

这种东西通常要看模型的物理意义来决定外边界。

发自小木虫Android客户端
青春有千万种,却没有一种可以重来
2楼2017-09-10 20:45:17
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

星座起源

新虫 (小有名气)

引用回帖:
2楼: Originally posted by whyhow at 2017-09-10 20:45:17
这种东西通常要看模型的物理意义来决定外边界。

OK.其实这个是无限大地层中间一口井的渗流数学模型,表征的就是压力播还没传至边界时的情形,它的外边界条件就是这样,解析解的话很好处理,而用有限差分我就不明白了。。。

发自小木虫Android客户端
3楼2017-09-10 21:54:00
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

毅丝不挂

木虫 (小有名气)

【答案】应助回帖

感谢参与,应助指数 +1
跟你采用的网格类型有关,如果是点中心的,直接就是第一个网格点吧,如果是块中心的,可以在内边界左边在多虚设一个网格,或者直接采用第一个网格近似,你可以看看张烈辉编的哪本油藏数值模拟的书,上面有具体的处理方法。其实这类模型我感觉你直接求解析解不就得了,为什么要数值解。
努力,奋斗
4楼2017-09-11 09:49:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

星座起源

新虫 (小有名气)

引用回帖:
4楼: Originally posted by 毅丝不挂 at 2017-09-11 09:49:01
跟你采用的网格类型有关,如果是点中心的,直接就是第一个网格点吧,如果是块中心的,可以在内边界左边在多虚设一个网格,或者直接采用第一个网格近似,你可以看看张烈辉编的哪本油藏数值模拟的书,上面有具体的处理 ...

非常感谢!这里其实我想问的主要是柱坐标下边界条件的处理。我查了很多,大部分的差分方法只是针对直角坐标系,极坐标系很少。而且关于极坐标系下的边界条件如果要是按数学物理方法去处理的话相比直角坐标也更麻烦,内边界要加一个有界条件,角度部分还要加一个周期条件。如果用拉普拉斯变换的话,对于这里的模型还好一点,反演很简单,如果要是稍微变一变,那反演起来就比较麻烦了,搞不好还得数值反演。
所以就想看看如果纯粹是用数值解的话该怎么弄,是不是更简单一些。谢谢!
5楼2017-09-11 15:47:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 星座起源 的主题更新
信息提示
请填处理意见