| ²é¿´: 4750 | »Ø¸´: 50 | ||||||
| ¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û43´Î£¬×÷Õßwhen1226Ôö¼Ó½ð±Ò 34.4 ¸ö | ||||||
[×ÊÔ´]
<Physics from Symmetry>-by Jakob Schwichtenberg 2015
|
||||||
|
**Undergraduate Lecture Notes in Physics** <Physics from Symmetry>-by Jakob Schwichtenberg 2015 Contents Part I Foundations 1 Introduction 3 1.1 What we Cannot Derive . . . . . . . . . . . . . . . . . . . 3 1.2 Book Overview . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Elementary Particles and Fundamental Forces . . . . . . 7 2 Special Relativity 11 2.1 The Invariant of Special Relativity . . . . . . . . . . . . . 12 2.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Upper Speed Limit . . . . . . . . . . . . . . . . . . . . . . 16 2.4 The Minkowski Notation . . . . . . . . . . . . . . . . . . 17 2.5 Lorentz Transformations . . . . . . . . . . . . . . . . . . . 19 2.6 Invariance, Symmetry and Covariance . . . . . . . . . . . 20 Part II Symmetry Tools 3 Lie Group Theory 25 3.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Rotations in two Dimensions . . . . . . . . . . . . . . . . 29 3.2.1 Rotations with Unit Complex Numbers . . . . . . 31 3.3 Rotations in three Dimensions . . . . . . . . . . . . . . . 33 3.3.1 Quaternions . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.1 The Generators and Lie Algebra of SO(3) . . . . 41 3.4.2 The Abstract Definition of a Lie Algebra . . . . . 44 3.4.3 The Generators and Lie Algebra of SU(2) . . . . 45 3.4.4 The Abstract Definition of a Lie Group . . . . . . 47 3.5 Representation Theory . . . . . . . . . . . . . . . . . . . . 49 3.6 SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.1 The Finite-dimensional Irreducible Representations of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.2 The Casimir Operator of SU(2) . . . . . . . . . . . 56 3.6.3 The Representation of SU(2) in one Dimension . 57 3.6.4 The Representation of SU(2) in two Dimensions 57 3.6.5 The Representation of SU(2) in three Dimensions 58 3.7 The Lorentz Group O(1, 3) . . . . . . . . . . . . . . . . . . 58 3.7.1 One Representation of the Lorentz Group . . . . 61 3.7.2 Generators of the Other Components of the Lorentz Group . . . . . . . . . . . . . . . . . . . . 64 3.7.3 The Lie Algebra of the Proper Orthochronous Lorentz Group . . . . . . . . . . . . . . . . . . . . 66 3.7.4 The (0, 0) Representation . . . . . . . . . . . . . . 67 3.7.5 The (1/2, 0) Representation . . . . . . . . . . . . . . 68 3.7.6 The (0, 1/2) Representation . . . . . . . . . . . . . . 69 3.7.7 Van der Waerden Notation . . . . . . . . . . . . . 70 3.7.8 The (1/2, 1/2) Representation . . . . . . . . . . . . . . 75 3.7.9 Spinors and Parity . . . . . . . . . . . . . . . . . . 78 3.7.10 Spinors and Charge Conjugation . . . . . . . . . . 81 3.7.11 Infinite-Dimensional Representations . . . . . . . 82 3.8 The Poincare Group . . . . . . . . . . . . . . . . . . . . . 84 3.9 Elementary Particles . . . . . . . . . . . . . . . . . . . . . 85 3.10 Appendix: Rotations in a Complex Vector Space . . . . . 87 3.11 Appendix: Manifolds . . . . . . . . . . . . . . . . . . . . . 87 4 The Framework 91 4.1 Lagrangian Formalism . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Fermat¡¯s Principle . . . . . . . . . . . . . . . . . . 92 4.1.2 Variational Calculus - the Basic Idea . . . . . . . . 92 4.2 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Particle Theories vs. Field Theories . . . . . . . . . . . . . 94 4.4 Euler-Lagrange Equation . . . . . . . . . . . . . . . . . . . 95 4.5 Noether¡¯s Theorem . . . . . . . . . . . . . . . . . . . . . . 97 4.5.1 Noether¡¯s Theorem for Particle Theories . . . . . 97 4.5.2 Noether¡¯s Theorem for Field Theories - Spacetime Symmetries . . . . . . . . . . . . . . . . . . . . . . 101 4.5.3 Rotations and Boosts . . . . . . . . . . . . . . . . . 104 4.5.4 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5.5 Noether¡¯s Theorem for Field Theories - Internal Symmetries . . . . . . . . . . . . . . . . . . . . . . 106 4.6 Appendix: Conserved Quantity from Boost Invariance for Particle Theories . . . . . . . . . . . . . . . . . . . . . 108 4.7 Appendix: Conserved Quantity from Boost Invariance for Field Theories . . . . . . . . . . . . . . . . . . . . . . . 109 Part III The Equations of Nature 5 Measuring Nature 113 5.1 The Operators of Quantum Mechanics . . . . . . . . . . . 113 5.1.1 Spin and Angular Momentum . . . . . . . . . . . 114 5.2 The Operators of Quantum Field Theory . . . . . . . . . 115 6 Free Theory 117 6.1 Lorentz Covariance and Invariance . . . . . . . . . . . . . 117 6.2 Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Complex Klein-Gordon Field . . . . . . . . . . . . 119 6.3 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . 120 6.4 Proca Equation . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Interaction Theory 127 7.1 U(1) Interactions . . . . . . . . . . . . . . . . . . . . . . . 129 7.1.1 Internal Symmetry of Free Spin 1/2 Fields . . . . . 129 7.1.2 Internal Symmetry of Free Spin 1 Fields . . . . . 131 7.1.3 Putting the Puzzle Pieces Together . . . . . . . . . 132 7.1.4 Inhomogeneous Maxwell Equations and Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . 134 7.1.5 Charge Conjugation, Again . . . . . . . . . . . . . 135 7.1.6 Noether¡¯s Theorem for Internal U(1) Symmetry . 136 7.1.7 Interaction of Massive Spin 0 Fields . . . . . . . . 138 7.1.8 Interaction of Massive Spin 1 Fields . . . . . . . . 138 7.2 SU(2) Interactions . . . . . . . . . . . . . . . . . . . . . . 139 7.3 Mass Terms and Unification of SU(2) and U(1) . . . . . 145 7.4 Parity Violation . . . . . . . . . . . . . . . . . . . . . . . . 152 7.5 Lepton Mass Terms . . . . . . . . . . . . . . . . . . . . . . 156 7.6 Quark Mass Terms . . . . . . . . . . . . . . . . . . . . . . 160 7.7 Isospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.7.1 Labelling States . . . . . . . . . . . . . . . . . . . . 162 7.8 SU(3) Interactions . . . . . . . . . . . . . . . . . . . . . . 164 7.8.1 Color . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.8.2 Quark Description . . . . . . . . . . . . . . . . . . 167 7.9 The Interplay Between Fermions and Bosons . . . . . . . 169 Part IV Applications 8 Quantum Mechanics 173 8.1 Particle Theory Identifications . . . . . . . . . . . . . . . . 174 8.2 Relativistic Energy-Momentum Relation . . . . . . . . . . 174 8.3 The Quantum Formalism . . . . . . . . . . . . . . . . . . 175 8.3.1 Expectation Value . . . . . . . . . . . . . . . . . . 177 8.4 The Schrödinger Equation . . . . . . . . . . . . . . . . . . 178 8.4.1 Schrödinger Equation with External Field . . . . 180 8.5 From Wave Equations to Particle Motion . . . . . . . . . 180 8.5.1 Example: Free Particle . . . . . . . . . . . . . . . . 181 8.5.2 Example: Particle in a Box . . . . . . . . . . . . . . 181 8.5.3 Dirac Notation . . . . . . . . . . . . . . . . . . . . 185 8.5.4 Example: Particle in a Box, Again . . . . . . . . . 187 8.5.5 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.6 Heisenberg¡¯s Uncertainty Principle . . . . . . . . . . . . . 191 8.7 Comments on Interpretations . . . . . . . . . . . . . . . . 192 8.8 Appendix: Interpretation of the Dirac Spinor Components . . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.9 Appendix: Solving the Dirac Equation . . . . . . . . . . . 199 8.10 Appendix: Dirac Spinors in Different Bases . . . . . . . . 200 8.10.1 Solutions of the Dirac Equation in the Mass Basis 202 9 Quantum Field Theory 205 9.1 Field Theory Identifications . . . . . . . . . . . . . . . . . 206 9.2 Free Spin 0 Field Theory . . . . . . . . . . . . . . . . . . . 207 9.3 Free Spin 1/2 Theory . . . . . . . . . . . . . . . . . . . . . . 212 9.4 Free Spin 1 Theory . . . . . . . . . . . . . . . . . . . . . . 215 9.5 Interacting Field Theory . . . . . . . . . . . . . . . . . . . 215 9.5.1 Scatter Amplitudes . . . . . . . . . . . . . . . . . . 216 9.5.2 Time Evolution of States . . . . . . . . . . . . . . . 216 9.5.3 Dyson Series . . . . . . . . . . . . . . . . . . . . . 220 9.5.4 Evaluating the Series . . . . . . . . . . . . . . . . . 221 9.6 Appendix: Most General Solution of the Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Classical Mechanics 227 10.1 Relativistic Mechanics . . . . . . . . . . . . . . . . . . . . 229 10.2 The Lagrangian of Non-Relativistic Mechanics . . . . . . 230 11 Electrodynamics 233 11.1 The Homogeneous Maxwell Equations . . . . . . . . . . 234 11.2 The Lorentz Force . . . . . . . . . . . . . . . . . . . . . . . 235 11.3 Coulomb Potential . . . . . . . . . . . . . . . . . . . . . . 237 12 Gravity 239 13 Closing Words 245 Part V Appendices A Vector calculus 249 A.1 Basis Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 250 A.2 Change of Coordinate Systems . . . . . . . . . . . . . . . 251 A.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . 253 A.4 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 A.5 Right-handed and Left-handed Coordinate Systems . . . 254 B Calculus 257 B.1 Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 257 B.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . 257 B.3 The Taylor Series . . . . . . . . . . . . . . . . . . . . . . . 258 B.4 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 B.4.1 Important Series . . . . . . . . . . . . . . . . . . . 260 B.4.2 Splitting Sums . . . . . . . . . . . . . . . . . . . . 262 B.4.3 Einstein¡¯s Sum Convention . . . . . . . . . . . . . 262 B.5 Index Notation . . . . . . . . . . . . . . . . . . . . . . . . 263 B.5.1 Dummy Indices . . . . . . . . . . . . . . . . . . . . 263 B.5.2 Objects with more than One Index . . . . . . . . . 264 B.5.3 Symmetric and Antisymmetric Indices . . . . . . 264 B.5.4 Antisymmetric ¡Á Symmetric Sums . . . . . . . . 265 B.5.5 Two Important Symbols . . . . . . . . . . . . . . . 265 C Linear Algebra 267 C.1 Basic Transformations . . . . . . . . . . . . . . . . . . . . 267 C.2 Matrix Exponential Function . . . . . . . . . . . . . . . . 268 C.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . 268 C.4 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . 269 C.5 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . 269 D Additional Mathematical Notions 271 D.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 271 D.2 Delta Distribution . . . . . . . . . . . . . . . . . . . . . . . 272 Bibliography 273 Index 277 |
» ±¾Ìû¸½¼þ×ÊÔ´Áбí
-
»¶Ó¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æÈ¨ÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺xiaomuchong@tal.com - ¸½¼þ 1 : Physics_from_Symmetry.2015.Jakob_Schwichtenberg.pdf
2017-06-06 12:43:46, 3.14 M
» ÊÕ¼±¾ÌûµÄÌÔÌûר¼ÍƼö
Êé¼®ÏÂÔØÍøÕ¾ | רҵÊé¼®£¨ÍâÎİ棩WM | ×ÔÈ»¿ÆÑ§ | ¸ÐÎòÈËÉú |
» ±¾ÌûÒÑ»ñµÃµÄºì»¨£¨×îÐÂ10¶ä£©
» ²ÂÄãϲ»¶
AIÂÛÎÄд×÷¹¤¾ß£ºÊÇ¿ÆÑмÓËÙÆ÷»¹ÊÇѧÊõ×÷±×Æ÷£¿
ÒѾÓÐ3È˻ظ´
º¢×ÓÈ·ÕïÓÐÖжÈ×¢ÒâÁ¦È±ÏÝ
ÒѾÓÐ6È˻ظ´
¿µ¸´´óѧ̩ɽѧÕßÖÜì÷»ÝÍŶÓÕÐÊÕ²©Ê¿Ñо¿Éú
ÒѾÓÐ4È˻ظ´
2026²©Ê¿ÉêÇë-¹¦Äܸ߷Ö×Ó£¬Ë®Äý½º·½Ïò
ÒѾÓÐ6È˻ظ´
ÂÛÎÄͶ¸å£¬ÆÚ¿¯ÍƼö
ÒѾÓÐ4È˻ظ´
˶ʿºÍµ¼Ê¦Äֵò»Óä¿ì
ÒѾÓÐ13È˻ظ´
ÇëÎÊ2026¹ú¼Ò»ù½ðÃæÉÏÏîÄ¿»áÆô¶¯Éê2Í£1Âð
ÒѾÓÐ5È˻ظ´
ͬһƪÎÄÕ£¬Óò»Í¬Õ˺ÅͶ¸å¶Ô±à¼¾ö¶¨ÊÇ·ñËÍÉóÓÐûÓÐÓ°Ï죿
ÒѾÓÐ3È˻ظ´
ACS Applied Polymer MaterialsͶ¸å
ÒѾÓÐ10È˻ظ´
RSC ADV״̬ÎÊÌâ
ÒѾÓÐ4È˻ظ´
hustoe2011
ÖÁ×ðľ³æ (ÎÄ̳¾«Ó¢)
- Ó¦Öú: 178 (¸ßÖÐÉú)
- ½ð±Ò: 22850.1
- Ìû×Ó: 22052
- ÔÚÏß: 4425.9Сʱ
- ³æºÅ: 1333598
5Â¥2017-06-07 13:51:29
7Â¥2017-06-07 16:18:17
25Â¥2017-06-15 15:50:50
39Â¥2018-01-23 13:36:26
43Â¥2018-05-31 22:49:57
¼òµ¥»Ø¸´
gongyongde22Â¥
2017-06-06 17:51
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
mia093Â¥
2017-06-06 19:40
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
zhaozilai4Â¥
2017-06-07 07:55
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
xmc1411186Â¥
2017-06-07 14:47
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
lantianbihb8Â¥
2017-06-07 19:27
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
feng8846199Â¥
2017-06-07 19:38
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
rainman072410Â¥
2017-06-07 20:58
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
alfzhang11Â¥
2017-06-07 23:52
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
everie12Â¥
2017-06-08 00:49
»Ø¸´
ÎåÐÇºÃÆÀ ¸Ðл·ÖÏí£¡
touxian13Â¥
2017-06-08 04:04
»Ø¸´
happyfishs14Â¥
2017-06-08 06:56
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
c2002z15Â¥
2017-06-08 08:26
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
c2002z16Â¥
2017-06-08 08:27
»Ø¸´
¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
jchwang197217Â¥
2017-06-08 08:54
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
Quan.18Â¥
2017-06-08 09:18
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
jyhustb19Â¥
2017-06-08 16:33
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
xianlaoshi20Â¥
2017-06-08 19:45
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
hhxyww21Â¥
2017-06-09 07:59
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
wangth092122Â¥
2017-06-09 08:08
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
wmnick23Â¥
2017-06-09 17:32
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
tjdht24Â¥
2017-06-11 10:25
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
ÏëÁËÏë200826Â¥
2017-06-25 10:28
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
aso27Â¥
2017-06-27 23:15
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
zsywz28Â¥
2017-06-30 15:26
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
justorhou29Â¥
2017-06-30 15:30
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
daxia199730Â¥
2017-07-05 12:01
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
xiongjiawei31Â¥
2017-07-29 15:26
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
Liuyonglu132Â¥
2017-08-10 16:04
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
wangwenju33Â¥
2017-09-06 15:49
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
guli052034Â¥
2017-10-11 13:37
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
supervb35Â¥
2017-12-05 16:49
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
m06z51136Â¥
2017-12-06 10:20
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
10500070lin37Â¥
2017-12-06 11:01
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
hsuhong38Â¥
2017-12-15 17:31
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
fyl740Â¥
2018-03-21 20:12
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
10500070lin41Â¥
2018-03-21 20:52
»Ø¸´
¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
hefengyet42Â¥
2018-05-31 22:48
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
²ËÄñ00044Â¥
2018-06-13 10:13
»Ø¸´
ÎåÐÇºÃÆÀ
guli052045Â¥
2018-06-13 21:00
»Ø¸´
¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
shujj46Â¥
2019-02-03 16:13
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
³Âˆ?CY47Â¥
2019-04-02 22:03
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
woodhole48Â¥
2020-03-18 09:53
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
ljb19721149Â¥
2020-08-02 13:30
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡ ·¢×ÔСľ³æAndroid¿Í»§¶Ë
ãäÏæáÌáÌ50Â¥
2020-12-20 22:38
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡













»Ø¸´´ËÂ¥
touxian