版块导航
正在加载中...
客户端APP下载
论文辅导
申博辅导
登录
注册
帖子
帖子
用户
本版
应《网络安全法》要求,自2017年10月1日起,未进行实名认证将不得使用互联网跟帖服务。为保障您的帐号能够正常使用,请尽快对帐号进行手机号验证,感谢您的理解与支持!
24小时热门版块排行榜
小木虫论坛-学术科研互动平台
»
计算模拟区
»
程序语言
»
MATLAB/Mathematica
»
求助,EM算法的经典matlab代码
南方科技大学公共卫生及应急管理学院2026级博士研究生招生报考通知(长期有效)
3
1/1
返回列表
查看: 1273 | 回复: 2
只看楼主
@他人
存档
新回复提醒
(忽略)
收藏
在APP中查看
简心33
新虫
(初入文坛)
应助: 0
(幼儿园)
金币: 15
帖子: 1
在线: 39分钟
虫号: 6398365
注册: 2017-04-26
[
求助
]
求助,EM算法的经典matlab代码
已有1人参与
急需EM算法的matlab代码和EM算法的改进算法比如ECM,PX-EM的代码,如果有的话感激不尽
发自小木虫Android客户端
回复此楼
» 猜你喜欢
三甲基碘化亚砜的氧化反应
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
孩子确诊有中度注意力缺陷
已经有12人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
1楼
2017-05-03 14:57:07
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
somomo91
专家顾问
(职业作家)
专家经验: +3
应助: 144
(高中生)
金币: 19353
红花: 115
帖子: 3854
在线: 1053.2小时
虫号: 2399301
注册: 2013-04-03
专业: 动力学与控制
管辖:
计算模拟
【答案】应助回帖
感谢参与,应助指数 +1
这是经典的 EM-Gaussian mixture 程序
CODE:
function [W,M,V,L] = EM_GM(X,k,ltol,maxiter,pflag,Init)
% [W,M,V,L] = EM_GM(X,k,ltol,maxiter,pflag,Init)
%
% EM algorithm for k multidimensional Gaussian mixture estimation
%
% Inputs:
% X(n,d) - input data, n=number of observations, d=dimension of variable
% k - maximum number of Gaussian components allowed
% ltol - percentage of the log likelihood difference between 2 iterations ([] for none)
% maxiter - maximum number of iteration allowed ([] for none)
% pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none)
% Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)
%
% Ouputs:
% W(1,k) - estimated weights of GM
% M(d,k) - estimated mean vectors of GM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%
% Written by
% Patrick P. C. Tsui,
% PAMI research group
% Department of Electrical and Computer Engineering
% University of Waterloo,
% March, 2006
%
%%%% Validate inputs %%%%
if nargin <= 1,
disp('EM_GM must have at least 2 inputs: X,k!/n')
return
elseif nargin == 2,
ltol = 0.1; maxiter = 1000; pflag = 0; Init = [];
err_X = Verify_X(X);
err_k = Verify_k(k);
if err_X | err_k, return; end
elseif nargin == 3,
maxiter = 1000; pflag = 0; Init = [];
err_X = Verify_X(X);
err_k = Verify_k(k);
[ltol,err_ltol] = Verify_ltol(ltol);
if err_X | err_k | err_ltol, return; end
elseif nargin == 4,
pflag = 0; Init = [];
err_X = Verify_X(X);
err_k = Verify_k(k);
[ltol,err_ltol] = Verify_ltol(ltol);
[maxiter,err_maxiter] = Verify_maxiter(maxiter);
if err_X | err_k | err_ltol | err_maxiter, return; end
elseif nargin == 5,
Init = [];
err_X = Verify_X(X);
err_k = Verify_k(k);
[ltol,err_ltol] = Verify_ltol(ltol);
[maxiter,err_maxiter] = Verify_maxiter(maxiter);
[pflag,err_pflag] = Verify_pflag(pflag);
if err_X | err_k | err_ltol | err_maxiter | err_pflag, return; end
elseif nargin == 6,
err_X = Verify_X(X);
err_k = Verify_k(k);
[ltol,err_ltol] = Verify_ltol(ltol);
[maxiter,err_maxiter] = Verify_maxiter(maxiter);
[pflag,err_pflag] = Verify_pflag(pflag);
[Init,err_Init]=Verify_Init(Init);
if err_X | err_k | err_ltol | err_maxiter | err_pflag | err_Init, return; end
else
disp('EM_GM must have 2 to 6 inputs!');
return
end
%%%% Initialize W, M, V,L %%%%
t = cputime;
if isempty(Init),
[W,M,V] = Init_EM(X,k); L = 0;
else
W = Init.W;
M = Init.M;
V = Init.V;
end
Ln = Likelihood(X,k,W,M,V); % Initialize log likelihood
Lo = 2*Ln;
%%%% EM algorithm %%%%
niter = 0;
while (abs(100*(Ln-Lo)/Lo)>ltol) & (niter<=maxiter),
E = Expectation(X,k,W,M,V); % E-step
[W,M,V] = Maximization(X,k,E); % M-step
Lo = Ln;
Ln = Likelihood(X,k,W,M,V);
niter = niter + 1;
end
L = Ln;
%%%% Plot 1D or 2D %%%%
if pflag==1,
[n,d] = size(X);
if d>2,
disp('Can only plot 1 or 2 dimensional applications!/n');
else
Plot_GM(X,k,W,M,V);
end
elapsed_time = sprintf('CPU time used for EM_GM: %5.2fs',cputime-t);
disp(elapsed_time);
disp(sprintf('Number of iterations: %d',niter-1));
end
%%%%%%%%%%%%%%%%%%%%%%
%%%% End of EM_GM %%%%
%%%%%%%%%%%%%%%%%%%%%%
function E = Expectation(X,k,W,M,V)
[n,d] = size(X);
a = (2*pi)^(0.5*d);
S = zeros(1,k);
iV = zeros(d,d,k);
for j=1:k,
if V(:,:,j)==zeros(d,d), V(:,:,j)=ones(d,d)*eps; end
S(j) = sqrt(det(V(:,:,j)));
iV(:,:,j) = inv(V(:,:,j));
end
E = zeros(n,k);
for i=1:n,
for j=1:k,
dXM = X(i,:)'-M(:,j);
pl = exp(-0.5*dXM'*iV(:,:,j)*dXM)/(a*S(j));
E(i,j) = W(j)*pl;
end
E(i,:) = E(i,:)/sum(E(i,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Expectation %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [W,M,V] = Maximization(X,k,E)
[n,d] = size(X);
W = zeros(1,k); M = zeros(d,k);
V = zeros(d,d,k);
for i=1:k, % Compute weights
for j=1:n,
W(i) = W(i) + E(j,i);
M(:,i) = M(:,i) + E(j,i)*X(j,:)';
end
M(:,i) = M(:,i)/W(i);
end
for i=1:k,
for j=1:n,
dXM = X(j,:)'-M(:,i);
V(:,:,i) = V(:,:,i) + E(j,i)*dXM*dXM';
end
V(:,:,i) = V(:,:,i)/W(i);
end
W = W/n;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Maximization %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function L = Likelihood(X,k,W,M,V)
% Compute L based on K. V. Mardia, "Multivariate Analysis", Academic Press, 1979, PP. 96-97
% to enchance computational speed
[n,d] = size(X);
U = mean(X)';
S = cov(X);
L = 0;
for i=1:k,
iV = inv(V(:,:,i));
L = L + W(i)*(-0.5*n*log(det(2*pi*V(:,:,i))) ...
-0.5*(n-1)*(trace(iV*S)+(U-M(:,i))'*iV*(U-M(:,i))));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Likelihood %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function err_X = Verify_X(X)
err_X = 1;
[n,d] = size(X);
if n<d,
disp('Input data must be n x d!/n');
return
end
err_X = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_X %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function err_k = Verify_k(k)
err_k = 1;
if ~isnumeric(k) | ~isreal(k) | k<1,
disp('k must be a real integer >= 1!/n');
return
end
err_k = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_k %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function [ltol,err_ltol] = Verify_ltol(ltol)
err_ltol = 1;
if isempty(ltol),
ltol = 0.1;
elseif ~isreal(ltol) | ltol<=0,
disp('ltol must be a positive real number!');
return
end
err_ltol = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_ltol %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [maxiter,err_maxiter] = Verify_maxiter(maxiter)
err_maxiter = 1;
if isempty(maxiter),
maxiter = 1000;
elseif ~isreal(maxiter) | maxiter<=0,
disp('ltol must be a positive real number!');
return
end
err_maxiter = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_maxiter %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pflag,err_pflag] = Verify_pflag(pflag)
err_pflag = 1;
if isempty(pflag),
pflag = 0;
elseif pflag~=0 & pflag~=1,
disp('Plot flag must be either 0 or 1!/n');
return
end
err_pflag = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_pflag %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Init,err_Init] = Verify_Init(Init)
err_Init = 1;
if isempty(Init),
% Do nothing;
elseif isstruct(Init),
[Wd,Wk] = size(Init.W);
[Md,Mk] = size(Init.M);
[Vd1,Vd2,Vk] = size(Init.V);
if Wk~=Mk | Wk~=Vk | Mk~=Vk,
disp('k in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n')
return
end
if Md~=Vd1 | Md~=Vd2 | Vd1~=Vd2,
disp('d in Init.W(1,k), Init.M(d,k) and Init.V(d,d,k) must equal!/n')
return
end
else
disp('Init must be a structure: W(1,k), M(d,k), V(d,d,k) or []!');
return
end
err_Init = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Verify_Init %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [W,M,V] = Init_EM(X,k)
[n,d] = size(X);
[Ci,C] = kmeans(X,k,'Start','cluster', ...
'Maxiter',100, ...
'EmptyAction','drop', ...
'Display','off'); % Ci(nx1) - cluster indeices; C(k,d) - cluster centroid (i.e. mean)
while sum(isnan(C))>0,
[Ci,C] = kmeans(X,k,'Start','cluster', ...
'Maxiter',100, ...
'EmptyAction','drop', ...
'Display','off');
end
M = C';
Vp = repmat(struct('count',0,'X',zeros(n,d)),1,k);
for i=1:n, % Separate cluster points
Vp(Ci(i)).count = Vp(Ci(i)).count + 1;
Vp(Ci(i)).X(Vp(Ci(i)).count,:) = X(i,:);
end
V = zeros(d,d,k);
for i=1:k,
W(i) = Vp(i).count/n;
V(:,:,i) = cov(Vp(i).X(1:Vp(i).count,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Init_EM %%%%
%%%%%%%%%%%%%%%%%%%%%%%%
function Plot_GM(X,k,W,M,V)
[n,d] = size(X);
if d>2,
disp('Can only plot 1 or 2 dimensional applications!/n');
return
end
S = zeros(d,k);
R1 = zeros(d,k);
R2 = zeros(d,k);
for i=1:k, % Determine plot range as 4 x standard deviations
S(:,i) = sqrt(diag(V(:,:,i)));
R1(:,i) = M(:,i)-4*S(:,i);
R2(:,i) = M(:,i)+4*S(:,i);
end
Rmin = min(min(R1));
Rmax = max(max(R2));
R = [Rmin:0.001*(Rmax-Rmin):Rmax];
clf, hold on
if d==1,
Q = zeros(size(R));
for i=1:k,
P = W(i)*normpdf(R,M(:,i),sqrt(V(:,:,i)));
Q = Q + P;
plot(R,P,'r-'); grid on,
end
plot(R,Q,'k-');
xlabel('X');
ylabel('Probability density');
else % d==2
plot(X(:,1),X(:,2),'r.');
for i=1:k,
Plot_Std_Ellipse(M(:,i),V(:,:,i));
end
xlabel('1^{st} dimension');
ylabel('2^{nd} dimension');
axis([Rmin Rmax Rmin Rmax])
end
title('Gaussian Mixture estimated by EM');
%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Plot_GM %%%%
%%%%%%%%%%%%%%%%%%%%%%%%
function Plot_Std_Ellipse(M,V)
[Ev,D] = eig(V);
d = length(M);
if V(:,:)==zeros(d,d),
V(:,:) = ones(d,d)*eps;
end
iV = inv(V);
% Find the larger projection
P = [1,0;0,0]; % X-axis projection operator
P1 = P * 2*sqrt(D(1,1)) * Ev(:,1);
P2 = P * 2*sqrt(D(2,2)) * Ev(:,2);
if abs(P1(1)) >= abs(P2(1)),
Plen = P1(1);
else
Plen = P2(1);
end
count = 1;
step = 0.001*Plen;
Contour1 = zeros(2001,2);
Contour2 = zeros(2001,2);
for x = -Plen:step:Plen,
a = iV(2,2);
b = x * (iV(1,2)+iV(2,1));
c = (x^2) * iV(1,1) - 1;
Root1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);
Root2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);
if isreal(Root1),
Contour1(count,:) = [x,Root1] + M';
Contour2(count,:) = [x,Root2] + M';
count = count + 1;
end
end
Contour1 = Contour1(1:count-1,:);
Contour2 = [Contour1(1,:);Contour2(1:count-1,:);Contour1(count-1,:)];
plot(M(1),M(2),'k+');
plot(Contour1(:,1),Contour1(:,2),'k-');
plot(Contour2(:,1),Contour2(:,2),'k-');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% End of Plot_Std_Ellipse %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
赞
一下
回复此楼
2楼
2017-05-04 20:05:55
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
Zongren Li
发自小木虫Android客户端
3楼
2020-03-18 17:46:19
已阅
回复此楼
关注TA
给TA发消息
送TA红花
TA的回帖
相关版块跳转
第一性原理
量子化学
计算模拟
分子模拟
仿真模拟
程序语言
我要订阅楼主
简心33
的主题更新
3
1/1
返回列表
如果回帖内容含有宣传信息,请如实选中。否则帐号将被全论坛禁言
普通表情
龙
兔
虎
猫
百度网盘
|
360云盘
|
千易网盘
|
华为网盘
在新窗口页面中打开自己喜欢的网盘网站,将文件上传后,然后将下载链接复制到帖子内容中就可以了。
信息提示
关闭
请填处理意见
关闭
确定