24小时热门版块排行榜    

查看: 304  |  回复: 23
当前主题已经存档。

xf1314520y

金虫 (正式写手)

(3)渐减曝气法
        克服普通活性污泥法曝气池中供氧、需氧不平衡的另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。该工艺曝气池中的有机物浓度随着向前推进不断降低,污泥需氧量也不断下降,曝气量相应减少,如图8-23所示。
        (4)吸附再生活性污泥法
        吸附再生活性污泥法系根据废水净化的机理、污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改迸发展而来。图8-24所示为这一工艺的基本流程。
        曝气池被一隔为二,废水在曝气池的一部分- 吸附池内停留数十分钟,活性污泥同废水充分接触,废水中有机物被污泥所吸附,随后进入二沉池,此时,出水已达很高的净化程度。
        泥水分离后的回流污泥再迸入曝气池的另一部分-再生池,池中曝气但不进废水,使污泥中吸附的有机物进一步氧化分解。恢复了活性的污泥随后再次迸入吸附池同新进入的废水接触,并重复以上过程。
        为了更好地吸附废水中的污染物质,吸附再生活性污泥法所用的回流污泥量比普通活性污泥法多,回流比一般为50%~10%。此外,吸附池和再生池的总容积比普通活性污泥法的曝气池小得多,空气用量并不增加,因此,减少了占地和降低了造价。由于其回流污泥量较多,又使之具有较强的调济平衡能力,以适应进水负荷的变化。它的缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水(活性污泥对溶解性有机物的初期吸附作用效果较差),处理效果不理想。
        (5)完全混合活性污泥法
        完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。依构筑物的曝气池和沉淀池合建或分建的不同可分成两种类型。其流程见图8-25。
       
       
       
       
       
       
        (6)批式活性污泥法
        批式活性污泥法(又称序批式反应器,Sequencing Batch Reactor,简称SBR)是国内外近年来新开发的一种活性污泥法,其工艺特点是将曝气池和沉淀池合而为一,生化反应呈分批进行,基本工作周期可由进水、反应、沉降、排水和闲置五个阶段组成(图8-26)。
       
       
       
       
        进水期是指反应器从开始进水到达到反应器最大体积的一段时间,这时已同时进行着生物降解反应。在反应期中,反应器不再进水,废水处理逐渐达到预期的效果。进人沉降期时,活性污泥沉降,固、液分离,上清液即为处理后的水,并于排放期外排。这以后的一段时期直至下一批废水进入之前即为闲置期,活性污泥在此阶段进行内源呼吸,反硝化细菌亦可利用内源碳进行反硝化脱氮。
        与其他活性污泥工艺相比较,SBR具有下述特点:
        1)构造简单,投资节省
        SBR的曝气、沉淀在同一池内,省去了二沉池、回流装置和调蓄池等设施,因此,基建投资较低,是特别适合于乡村地区或仅设常日班的工厂的废水处理系统。
        2)控制灵活,可满足各种处理要求
        在SBR的运行过程中,一个周期中各个阶段的运行时间,总停留时间、供气量等都可按照进水水质和出水要求而加以调节。
        3)活性污泥性状好、污泥产率低
        由于SBR在进水初期有机物浓度高,污泥絮体内部的菌胶团细菌也能获得充足的营养,因此,有利于菌胶团细菌的生长,污泥结构紧密,沉降性能良好。此外,在沉降期,几乎是在静止状态下沉降,因此污泥沉降时间短,效率高。
        SBR的运行周期中有一闲置期,污泥处于内源呼吸阶段,因此,污泥产率比较低。
        4)脱氮效果好
        SBR系统可通过控制合适的充气、停气为硝化细菌和反硝化细菌创造适宜的好氧、缺氧反硝化脱氮条件,此外,反硝化细菌在闲置期还能进行内源反硝化,因此去氮效果好。
       
        五、生物膜法
        生物膜法和活件污泥法一样,同属好氧生物处理方法。但活性污泥法是依靠曝气池中悬浮流动着的活件污泥来分解有机物的,而生物膜法则主要依靠固着于载体表面的微生物膜来净化有机物。
        与活性污泥法相比,生物膜法具有以下特点:
生物膜对污水水质、水量的变化有较强的适应性,管理方便,不会发生污泥膨胀;
微生物固着在载体表面、世代时间较长的高级微生物也能增殖,生物相更为丰富、稳定,产生的剩余污泥少;
能够处理低浓度的污水;
生物膜法也存在有不足之处:生物膜载体增加了系统的投资;载体材料的比表面积小,反应装置容积负荷有限、空间效率低,在处理城市污水时处理效率比活性污泥法低,因此,生物膜法主要适用于中小水量污水的处理。
        生物膜法设备类型很多,按生物膜与废水的接触方式不同,可分为填充式和浸渍式两类。在填充式生物膜法中,废水和空气沿固定的填料或转动的盘片表面流过,与其上生长的生物膜接触,典型设备有生物滤池和生物转盘。在浸渍式生物膜法中,生物膜载体完全浸没在水小,通过鼓风曝气供氧。如载体固定,称为接触氧化法;如载体流化则称为生物流化床。
        目前所采用的生物膜法多数是好氧装置,少数是厌氧形式,如厌氧滤池和厌氧流化床等。
        本章主要讨论好氧生物膜法。根据装置的不同,可分为生物滤池,生物转盘和生物接触氧化法等三种。
不要轻言放弃,否则对不起自己!
21楼2009-01-09 08:41:44
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

(三)生物转盘
        生物转盘是在生物滤池基础上发展起来的一种高效、经济的污水生物处理设备。它具有结构简单、运转安全、电耗低、抗冲击负荷能力强,不发生堵塞的优点。目前已广泛运用到我国的生活污水以及许多行业的工业废水处理中、并取得良好效果。
        1.生物转盘的结构及净化作用原理
        (1)生物转盘构造
        生物转盘污水处理装置由生物转盘、氧化槽和驱动装置组成,构造如图8-32所示。生物转盘由固定在一根轴上的许多间距很小的圆盘或多角形盘片组成,盘片是生物转盘的主体,作为生物膜的载体要求具有质轻、强度高、耐腐蚀、防老化、比表面积大等特点,氧化槽位于转盘的正下方,一般采用钢板或钢筋混凝土制成与盘片外形基本吻合的半圆形,在氧化槽的两端设有进出水设备,槽底有放空管。
        (2)净化原理
        生物转盘在旋转过程中,当盘面某部分浸没在污水中时,盘上的生物膜便对污水中的有机物进行吸附;当盘片离开液面暴露在空气中时,盘上的生物膜从空气中吸收氧气对有机物进行氧化。通过上述过程,氧化槽内污水中的有机物减少,污水得到净化。转盘上的生物膜也同样经历挂膜、生长、增厚和老化脱落的过程,脱落的生物膜可在二次沉淀池中去除。生物转盘系统除有效地去除有机污染物外,如运行得当可具有硝化、脱氮与除磷的功能。
        2.生物转盘的组合形式及工艺流程
        根据生物转盘的转轴和盘片的布置形式,生物转盘可以是单轴单级形式(图8-32)以组合成单轴多级(图8-33)或多轴多级(图8-34)形式。
       
       
        城市污水生物转盘系统的基本工艺流程如图8-35所示。对于高浓度有机废水可采用图8-36所示的工艺加油流程,该流程能够将BOD值由数千mg/L降至20mg/L。
       
        根据上述的工艺流程,生物转盘污水处理系统具有如下特征:
        ①微生物浓度高,特别是最初几级生物转盘,这是生物转盘效率高的主要原因;
        ②反应槽不需要曝气,污泥勿需回流,因此动力消耗低,这是本法最突出的特征,耗电量为0.7kWh/kg BOD5,运行费用低;
        ③生物膜上微生物的食物链长,产生污泥量少,在水温为5-20℃的范围内,BOD的去除率为90%时,去除1kgBOD的污泥产量为0.25kg。
        六 厌氧生物处理法
        厌氧生物处理是在无氧的情况下,利用兼性菌和厌氧菌的代谢作用,分解有机物的一种生物处理法。是一种低成本的废水处理技术,它能在处理废水过程中回收能源。厌氧生化法不仅可用于处理有机污泥和高浓度有机废水,也用于处理中、低浓度有机废水,包括城市污水。
        厌氧生化法与好氧生化法相比具有下列优点。
        (1)应用范围广  好氧法因供氧限制一般只适用于中、低浓度有机废水的处理,而厌氧法既适用于高浓度有机废水,又适用于中、低浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的、如固体有机物、着色剂蒽酿和某些偶氮染料等。
        (2)能耗低  好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要允氧,而且产生的沼气可作为能源。废水有机物达一定浓度后,沼气能量可以抵偿消耗能量。当原水BOD5达到1500mg/L时,采用厌氧处理即有能量剩余。有机物浓度愈高,剩余能量愈多。—般厌氧法的动力消耗约为活性污泥法的1/10。
        (3)负荷高  通常好氧法的有机容积负荷为2~4kgBOD/m3.d,而厌氧法为2~10kg COD/m3.d,高的可达50kgCOD/m3.d。
        (4)剩余污泥量少,且其浓缩性、脱水性良好   好氧法每去除1kg COD将产生0.4~0.6 kg生物量,而厌氧法去除1kg COD只产生0.02~0.1kg 生物量,其剩余污泥量只有好氧法的5%~20%。同时,消化污泥在卫生学上和化学上都是稳定的。因此,剩余污泥处理和处置简单、运行费用低,甚至可作为肥料、饲料或饵料利用。
        (5)氮、磷营养需要量较少  好氧法一般要求BOD:N:P为100:5:1,而厌氧法的BOD:N:P为100:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。
        (6)厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。
        (7)厌氧活性污泥可以长期贮存,厌氧反应器可以季节性或间歇性运转。与好氧反应器相比,在停止运行一段时间后,能较迅速启动。
        但是,厌氧生物处理法也存在下列缺点:
        (1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备长。
        (2)处理后的出水水质差,往往需进一步处理才能达标排放。
       
        1. 厌氧消化原理
        复杂有机物的厌氧消化过程要经历数个阶段,由不同的细菌群接替完成。根据复杂有机物在此过程中的物态及物性变化,可分为以下三个阶段。
        第一阶段为水解阶段。废水中的不溶性大分子有机物(如蛋白质、多糖类、脂类等)经发酵细菌水解后,分别转化为氨基酸、葡萄糖和甘油等水溶性的小分子有机物。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。
       
        由于简单碳水化合物的分解产酸作用,要比含氮有机物的分解产氨作用迅速,故蛋白质的分解在碳水化合物分解后产生。
        含氮有机物分解产生的NH3除了提供合成细胞物质的氮源外,在水中部分电离,形成NH4HCO3,具有缓冲消化液pH值的作用,故有时也把继碳水化合物分解后的蛋白质分解产氨过程称为酸性减退期,反应为:
       
        第二阶段为产氢产乙酸阶段。在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2,如:
       
        第三阶段为产甲烷阶段。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲院,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3,反应为:
       
        上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。
        虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡,这种动态平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,其至会导致整个厌氧消化过程停滞。
        2. 影响厌氧处理的因素
        (1)温度  温度是影响微生物生命活动最重要的因素之一,其对厌氧微生物及厌氧消化的影响尤为显著。各种微生物都在一定的温度范围内生长,根据微生物生长的温度范围,习惯上将微生物分为三类:(a)嗜冷微生物,生长温度为5~20 ℃;(b)嗜温微生物,生长温度20~42℃;(c)嗜热微生物,生长温度42~75℃。相应地厌氧废水处理也分为低温、中温和高温三类。这三类微生物在相应的适应温度范围内还存在最佳温度范围,当温度高于或低于最佳温度范围时其厌氧消化速率将明显降低。在工程运用中,中温工艺中以30~40 ℃最为常见,其最佳处理温度在35~40℃;高温工艺以50~60 ℃最为常见,最佳温度为55℃。
        在上述范围里,温度的微小波动(例如1~3℃)对厌氧工艺不会有明显的影响,但如果温度下降幅度过大,则由于微生物活力下降,反应器的负荷也将降低。
        (2)pH值  产甲烷菌对pH值变化适应性很差,其最佳范围为6.8~7.2,超出该范围厌氧消化细菌会受到抑制。
        (3)氧化还原电位  绝对的厌氧环境是产甲烷菌进行正常活动的基本条件,产甲烷菌的最适氧化还原电位为-150~-400mV,培养甲烷菌的初期,氧化还原电位不能高于-330mV。
        (4)营养  厌氧微生物对碳、氮等营养物质的要求略低于好氧微生物,需要补充专门的营养物质有钾、钠、钙等金属盐类,它们是形成细胞或非细胞的金属络合物所需要的物质,同时也应加入镍、铝、钴、钼等微量金属,以提高若干酶的活性。
        (5)有机负荷  在厌氧法中,有机负荷通常指容积有机负荷,简称容积负荷,即消化器单位有效容积每天接受的有机物量(kg COD/m3.d)。对悬浮生长工艺,也有用污泥负荷表达的,即kg COD/(Kg 污泥.d);在污泥消化中,有促负荷习惯上以投配率或进料率表达,即每天所投加的湿污泥体积占消化器有效容积的百分数。由于各种湿污泥的含水率、挥发组分不尽一致,投配率不能反映实际的有机负荷,为此,又引入反应器单位有效容积每天接受的挥发性固体重量这一参数,即kg MLVSS/(m3.d)。
        有机负荷是影响厌氧消化效率的一个重要因素,直接影响产气量和处理效率。在一定范围内,随着有机负荷的提高,产气率即单位重量物料的产气量趋向下降,而消化器的容积产气量则增多,反之亦然。对于具体应用场合,进料的有机物浓度是一定的,有机负荷或投配率的提高意味着停留时间缩短,则有机物分解率将下降,势必使单位重量物料的产气量减少。但因反应器相对的处理量增多了,单位容积的产气量将提高。
        有机负荷值因工艺类型、运行条件以及废水废物的种类及其浓度而异。在通常的情况下,采用常规厌氧消化工艺,中温处理高浓度工业废水的有机负荷为2~3kg COD/(m3.d),在高温下为4~6kg COD/(m3.d)。上流式厌氧污泥床反应器、厌氧滤池、厌氧流化床等新型厌氧工艺的有机负荷在中温下为5~15 kg COD/(m3.d),可高达30 kg COD/(m3.d)。
        (6)有毒物质  有毒物质会对厌氧微生物产生不同程度的抑制,使厌氧消化过程受到影响甚至破坏,常见抑制性物质为硫化物、氨氮、重金属、氰化物及某些人工合成的有机物。
       
        3.厌氧法的工艺和设备
        (1)厌氧接触法
        1)工艺流程
        厌氧接触法是对普通污泥消化池的改进,工艺流程如图8-37所示,主要特点是在厌氧反应器后设沉淀池,使污泥回流,保证厌氧反应器内能够维持较高的污泥浓度,可达5~10g MLVSS/L,大大降低反应器的水力停留时间,并使其具有一定的耐冲击负荷能力。该工艺存在的问题有:(a)厌氧反应器排出的混合液中的污泥由于附着大量的气泡在沉淀池中易于上浮到水面而被出水带走;(b)进入沉淀池的污泥仍有产甲烷菌在活动,并产生沼气,使已沉下的污泥上翻,影响出水水质、降低回流污泥的浓度。对此采取措施有:(a)在反应器和沉淀池之间设脱气器,尽可能脱除沼气;(b)在反应器与沉淀池之间设冷却器,抑制产甲烷菌的活动;(c)在沉淀池投加混凝剂;(d)用超滤代替沉淀池。采取上述措施后,可使该工艺具有如下特点:(a)污泥负荷高,耐冲击能力强;(b)有机容积负荷较高,中温消化时容积负荷为0.5~2.5kg BOD5/(m3.d),去除率为80%~90%;(c)出水水质好。本工艺适合处理悬浮物、有机物浓度均较高的废水,废水COD一般不低于3000mg/L,悬浮物浓度可达50000mg/L。
        2)厌氧接触法的应用
        厌氧接触法主要用于处理高浓度有机废水,不同的废水其工艺参数也不相同,在具体进行工艺设计时应通过相应的试验来确定。如用厌氧接触法处理酒精废水,原废水COD浓度为50000~54000mg/L,BOD5浓度为26000~34000mg/L,反应温度采用53~55℃,反应器内污泥浓度为20%~30%,COD容积负荷为9.11~11.7kg COD/(m3.d),水力停留时间为4~2.5d,COD的去除率为87%;用该工艺处理屠宰废水,反应器容积负荷取2.56kg BOD5/(m3.d),水力停留时间12~13h,反应温度为27~31℃,污泥浓度为7000~12000mg/L,沉淀池水力停留时间1~2h,表面负荷14.7m3/(m2.h),回流比3:1,当原水BOD5浓度为1381mg/L时,接触厌氧反应池的去除率为90.6%,运行结果表明,当BOD5容积负荷从2.56kg BOD5/(m3.d)上升到3.2kg BOD5/(m3.d)时,去除率由90.6%下降到83%,产气量由0.4m3/kgBOD5下降到0.29m3/kgBOD5。
不要轻言放弃,否则对不起自己!
22楼2009-01-09 08:42:32
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

(2) 厌氧生物滤池
        厌氧滤池构造
        厌氧生物滤池是装有填料的厌氧反应器,厌氧微生物以生物膜的形态生长在滤料的表面,废水通过淹没滤料,在生物膜的吸附和微生物的代谢以及滤料的截留三种作用下,废水中的有机污染物被去除。厌氧滤池有升流式、降流式和升流混合式三种,具体结构见图8-38。在升流式厌氧生物滤池中,废水由反应器底部进入,向上流动通过滤料层,微生物大部分以生物膜的形式附着在滤料表面,少部分以厌氧活性污泥的形式存在于滤料的间隙中,它的生物总量比降流式厌氧生物滤池高,因此效率高。但普通升流式生物滤池的主要缺点有:(a)底部易于堵塞;(b)污泥沿深度分布不均匀。通过出水回流的方法可降低进水浓度,提高水流上升速度。升流式厌氧滤池平面形状一般为圆形,直径为6~26m,高度为3~13m。
        降流式厌氧生物滤池其布水装置在滤料层上部,发生堵塞可能性比升流式小。
        升流混合型厌氧生物滤池在池底的布水系统与滤料层之间留有一定空间以便悬浮状的颗粒污泥能在其中生长、累积。它的优点有:(a)与升流厌氧生物滤池相比,减小了滤料层厚度,与升流式厌氧污泥床相比省去了三相分离器;(b)可增加反应器中总的生物固体量,并减少滤池被堵塞的可能性。
        厌氧生物滤池的容积负荷率可通过试验确定或参考类同的工厂运行数据,影响容积负荷率的因素有:废水水质、滤料性质、温度、pH值、营养物质、有害物质等。根据有关资料,当反应温度为30~35℃时,块状滤料负荷率可采用3~6kg COD/(m3.d),而塑料滤料为5~8kg COD/(m3.d)。
        滤料是厌氧生物滤池的主体部分,应具备下列特性:比表面积大、孔隙率高、表面粗糙、化学及生物学的稳定性较强以及机械强度高等。常用的滤料有碎石、卵石、焦炭以及各种形式的塑料滤料,其中碎石、卵石滤料的比表面积较小(40~50m2/m3)、孔隙率低(50%~60%),产生的生物膜较少,生物固体的浓度不高,有机负荷较低[3~6kg COD/(m3.d)],运行中易发生堵塞现象。塑料滤科的比表面积和孔隙率都大,如波纹板滤料的比表面积为100~ 200 m2/m3,孔隙率达80%~90%,在中温条件下,有机负荷可达5~15 kg COD/(m3.d),且不容易发生堵塞现象。
       
        (3)升流式厌氧污泥床(UASB)
        1)升流式厌氧污泥床的构造
        升流式厌氧污泥床结构如图8-39所示,集生物反应器与沉淀池于一体,是一种结构紧凑的厌氧反应器,反应器主要由以下几部分组成:
        ①进水配水系统  该系统的形式有树枝管、穿孔管以及多点多管三种形式,其功能是保证配水均匀和水力搅拌。
        ②反应区  包括颗粒污泥区和悬浮污泥区,是UASB的主要部位,有机物主要在这里被分解。
        ③三相分离器  由沉淀区、回流缝和气封组成,其功能是将气体(沼气)、固体(污泥)和液体(废水)分开,它的分离效果将直接影响反应器的处理效果。
        ④出水系统  把沉淀区处理过的水均匀地加以收集,排出反应器,常用出水堰结构。
        ⑤气室  也称集气罩,作用是收集气体。
        2)UASB的机理和特点   
        在UASB反应区内存留大量的厌氧污泥,具有良好的凝聚和沉淀性能的污泥在反应器底部形成颗粒污泥,废水从反应器底部进入与颗粒污泥进行充分混合接触后被污泥中的微生物分解。UASB具有如下优点:(a)污泥床内生物量多,折合浓度计算可达20~30g/L;(b)容积负荷率高,在中温发酵条件下,一般可达10 kg COD/(m3.d),甚至能够高达15~40kg COD/(m3.d),废水在反应器的水力停留时间短,可大大缩小反应器容积;(c)设备简单,不需要填料和机械搅拌装置,便于管理,不会发生堵塞问题。
        3)UASB的运用
        为了使UASB能高效运行,形成颗粒污泥是关键问题,因此在系统建成后就应培养颗粒污泥,影响颗粒污泥形成的因素主要有:(a)温度;(b)接种污泥的质量与数量,如有条件采用已培养好的颗粒污泥,可大大缩短培养时间;(c)碱度,进水碱度应保持在750~1000mg/L之间;(d)废水性质;(e)水力负荷和有机负荷,启动时有机负荷不宜过高,一般以0.1~0.3kg COD/(kg MLVSS.d)为宜,随着颗粒污泥的形成,有机负荷可以逐步提高。
       
        七、自然条件下的生物处理
        自然条件下的生物处理方法主要有两种:水体净化法和土壤净化法。氧化塘和养殖塘等属于水体净化法;过滤田和灌溉田等属于土壤净化法。水田灌溉则介于两者之间。水体净化法的净化过程和机理与人工条件下的活性污泥法相类似;土壤净化法的净化过程和机理则与人工条件下的生物膜法相类似。
        (一)生物塘
        1. 生物塘的种类
        在天然或人工整修的池塘里,利用塘水中生长的微生物处理有机废水的设施,叫做生物塘。按照生物塘中微生物活动的特征,可将其分为三类:好氧塘--池子浅,阳光透射,负荷小,全部废水都能进行好气生物转化;兼性塘--池子较深,阳光半透射,负荷较大,池的上层进行好气生物转化,底层和污泥层进行厌气生物转化;厌氧塘--池子深,负荷大,废水进行厌气生物转化。
        按照生物塘的利用情况,可特其分为单纯处理型和兼作利用型。单纯处理型仅用以处理废水,兼作利用型可以在塘中养殖青绿饲料、藻类、海带、藕及鱼等,因而叫做养殖塘。
        生物塘一般都采用藻类生化复氧和水面自然复氧方法以取得微生物需要的氧气,但也有通过人工机械曝气方式进行补充供氧的,后者叫做曝气生物塘。
        几种生物塘的特征见表8-7。
       
        生物塘还可分为单级和多级两种。多级(4~5级)的后几级常用作养殖塘。
        (1)生物氧化塘  生物氧化塘多指好氧生物塘及深度较浅的兼性塘。池塘中氧可通过水面自然复氧和藻类的生化作用复氧来补给。生物氧化塘中活动的植物性浮游生物是很多的,代表性的种属有:绿藻类的小球藻、栅列藻;鞭毛虫类的衣滴虫属、眼虫属等。
        由于微生物在生化过程中不断消耗溶解氧,致使水体表层的溶解氧来不及及时扩散到深层,造成了溶解氧沿深度的分布不均匀。水体表层溶解氧浓度大,是好氧微生物活动的好场所,称为好气带。在深层溶解氧的浓度低,约为0.2毫克/d,属于兼性厌氧微生物活动的场所,称为兼气带。如果池子很深,则最下层及污泥层是厌氧微生物活动的场所,称为厌气带。
        一般废水池塘中阳光能够射进的深度不超过0.4~0.5米。在此深度内有大量的藻类生长,溶解氧浓度高,异养微生物代谢旺盛,有机物分解快。所以把深度不大于0.5米的浅水池塘,比叫高速氧化塘。深度在l~2.5米范围内者,既有好氧分解过程,又有厌氧分解过程。这种池塘的生化反应速度较慢,叫做普通氧化塘或兼气氧化塘。普通氧化塘中微生物的共生关系及其分解有机物的过程,示于图8-40。
        氧化塘受自然条件影响很大,因而对氧化塘的BOD负荷和停留时间不宜作统一规定,应因地制宜。国外,BOD负荷常在9~19克/米2·日范围内;在我国,经过机械处理的废水为200~250米3/公顷·日;经过生物处理的废水为4000~5000米3/公顷·日。
        (2)曝气塘  为了加强复氧强度,可在生物塘上设置机械曝气器。曝气塘内水流紊动激烈,各处充氧比较均匀,水较浑浊,藻类无法生活,其生物学特性更接近于活性污泥法。有机物的去除率和温度、停留时间及废水特性有关。
        曝气塘的深度一般为3米,停留时间介于3~8日,BOD负荷多为0.03~0.06公斤/米3(塘)·日,去除率可达90%。
        (3)厌氧塘  在厌氧塘中,BOD负荷很高,溶解氧被消耗殆尽,因而只有厌氧菌和兼性厌氧菌对有机物进行厌氧分解,这个过程和污泥的厌氧消化相同。厌氧分解的效率与温度有关,—般建造的池型为了能够保温,要求表面积和体积的比值应尽量小些,池子的深度要大些(2.5~4米)。
       
        (二)污水灌溉
        1.污水灌溉的作用
        (1)净化废水,保护环境  进行旱田灌溉时,废水的净化原理基本上和生物膜法相同。悬浮物被截留于上土壤表层;胶体和部分溶解物被吸附于土壤颗粒表面;离子态污染物通过离子交换作用,而被土壤颗粒截留下来。
        在污水灌溉过程中,被截留及吸附的污染物和土壤微生物一起,形成很薄的生物膜,进行着有机物的生物转化。在土壤表层,通风条件好,有机污染物浓度高,生物氧化作用强烈,因而去除率高,属于好气生物处理带。该带大体在土壤表层0.2~0.3米范围内;当土壤孔隙大负荷低时,可能更深些。其下部供氧条件差,逐渐进入兼性生物处理带。再往深层,便是厌气生物处理带。
        进行水田灌溉时,污水的净化机理和生物塘类似。水中的悬浮物沉于水底,胶体和溶解物分散于水中,前者靠土壤微生物进行净化,后者靠水体微生物来净化。由于农田作物的覆盖,光合作用不充分,所以藻类的作用已不象氧化塘那样重要;而且主要依靠水层浅及风力扰动等有利条件进行大气复氧。水田灌溉中,微生物十分活跃,加之农作物的吸收作用,致使有机氮代谢产物的NH3下降得十分迅速。
        (2)给土壤提供了水分和肥分  农作物需要充分的水分以维持其生理过程,一般由根系吸收,通过茎叶,最后向大气蒸发。土壤也需要水分以溶解各种肥料营养物质,供给农作物吸收。土壤微生物也需要湿润的环境,以进行生命活动。可见土壤中的水分是何等的重要。凡是以补给水分为主要目标的灌溉,称为浸润灌溉。
        废水中含有农作物需要的各种肥分。据我国一些城市的分折,污水中含总氮30~90毫克/升,氨氮5~50毫克/升,磷4~40毫克/升,钾5~40毫克/升。凡是以施肥为主要目标的灌溉,称为施肥灌溉。
        此外,污水灌溉还能改良土壤,使贫瘠板结的土壤形成团粒结构,有利于农作物的生长;污水灌溉还能提高土壤温度,延长作物的生长期等。
        污水灌溉也存在一些问题:城市污水中工业废水的组分逐日增多,毒物也随之增加,不但影响农作物的产量和质量,而且有的毒物还能在土壤中积累;其次,污水常年不断,而农田需要则是有季节性的;再其次是灌溉水量与废水量不协调,并不是有多少污水都能包下来的,灌溉过量还会对环境造成新的危害。
        2.污水灌溉对水质的要求
        (1)不含有害农作物的有毒及有害成分;严格控制重金属和某些有毒化学物质的含量;酸碱度应适中(pH值=6~8);温度不高于40℃;悬浮固体浓度不大于200~300毫克/升。
        (2)不淤积和堵塞土壤孔隙,不使土壤盐渍化。
        (3)不传染疾病。
        (4)不污染地下及地面水源。
        (5)不含有能在农作物中积累的化学物质。
        利用工业废水灌溉时,必须持积极而又慎重的态度。一般应在小型实验的基础上,确定合理的水质标准。要做好调查研究,充分掌握各种原始资料,如:气象资料,地形资料,土壤资料,水文及水文地质资料,污水资料等,以便做好进行污水灌区的规划和设计工作。
        从环境保护的角度出发,废水只有经过适当的处理(机械处理或生物处理)之后,才能用于灌溉农田。所以,灌区位置的选择应与废水处理厂的厂址选择结合起来考虑。通常应把灌区选于处理厂的附近,最好把灌溉干渠与污水处理厂出水渠结合起来,使排灌两便,又节约投资。如果处理厂附近有丰富的地下水源或地面水源,灌区应选于较远较高的缺水地区,以防污染水源,并解决农田需要问题。选择灌区还必须考虑终年利用的可能性,最好能做到全年均衡用水。对于地下水位高,土壤渗透好,低洼易涝有给水水源的地区,一般不应选作灌区。
       
        八、生物污泥的处理
        生物化学法是目前世界上最经济、有效的水处理方法,因而得到广泛使用。但是,在生化法处理过程中,常会产生大量的污泥和沉渣。据理论计算,每处理1t BOD将生成0.84t细胞体。一般污水厂产生的污泥量约是处理水量的0.3%~0.5%(体积)。污泥的成份相当复杂,不仅含有氮、磷、钾有机物等植物营养成份,以及各类微生物和无机物,还含有重金属离子,病原微生物、寄生虫卵等有毒有害物质,必须加以妥善处理。
        目前世界上所采用的污泥处理处置方法大体如图8-41所示,其中应用较多的是厌氧消化法和焚烧法。
        焚烧法要消耗大量燃料,如日本1984年焚烧处理污泥量占总量的72%,消耗重油3.8×105 m3,占污水处理厂消耗重油总量的88%。厌氧消化法虽可使能耗大大降低,产生沼气还可用以补偿能源消耗,但消化时间长,占地面积大,冬季还需补充燃料以保温,对含有抑制消化毒物的某些工业废水的污泥还不能进行厌氧消化处理。因此,研究出一种既能有效利用污泥本身能量,又可处理各种污泥的新方法,也是污泥处理中急待解决的一个课题。
不要轻言放弃,否则对不起自己!
23楼2009-01-09 08:42:55
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

世纪80年代初期,美国和日本等国进行了污泥燃料化的研究和应用,该法是以机械脱水污泥为原料,通过高效蒸发的办法进一步去除污泥中的水分,所得干燥污泥直接做为燃料,进行蒸汽发电,以电力形式回收能量。污泥燃料化为污泥的处置开辟了一条新的途径,既能有效地解决环境污染,又可以从废物中获得一种新能源,是一种很有发展前途的新技术。
       
第六节  废水处理系统设计
        一、 水污染的综合防治
        20世纪60年代以来,城市污水及工业废水的排放量迅速增加,造成水体污染日益严重。特别是工业废水比例较大,带着大量有害有毒物质进入水体,经过种种方法处理之后,虽然能得到一定程度的净化,但在成本和能源上消耗巨大,效果也不理想,特别是对城市雨水径流、农田排水等面污染源还缺乏有效的控制方法,地下水的污染也成为一个突出的问题。因此,单纯采用对排放污水进行处理的方法,并不能从根本上解决水体污染问题,而应采用综合防治技术,建立综合防治体系。
        水体污染的综合防治包括:人工处理和自然净化相结合;无害化处理和综合利用相结合;推行工业用水的闭路循环和区域用水循环系统,发展少废水或无废水工艺。水污染的综合防治主要有以下技术和措施。
        1. 减少废水及污染物排放量
        解决水污染最有效的方法是发展工业和区域用水循环系统,这种方法对缺水的城市和工矿区效果特别显著。在防治工业废水污染方面,不仅是处理已排放的废水,更重要的是消除产生废水的污染源。可采取的主要措施有节约用水,规定用水定额,用经济手段加强用水和排污管理,减少新鲜用水量,尽可能做到废水的重复利用,或将废水经处理后注入地下以补充地下水;改善生产工艺和管理制度,发展不用水或少用水的生产工艺,采用无污染或少污染的新工艺。
        2.发展区域性水污染防治系统
        发展区域性水污染防治系统包括制定区域性水质管理规划,合理利用自然净化能力,实行排放污染物的总量控制。污水经处理后用于农业生产实行污水土地处理是实现污水资源他的重要途径。通过科学管理可以充分发挥土壤的强大净化能力,有效地去除多种污染物。此外,还可以在不污染地下水的情况下建立地下污水库,调节排污负荷,对污水进行有控制的排放和稀释。
        3. 综合考虑水资源规划、水体用途、经济投资和自然净化能力
        要用系统工程方法选择合理、经济的处理措施和处理新技术,充分利用生物塘、氧化沟等自然净化手段,帮助处理污水、降低处理成本。防治水污染要研究工业用水闭路循环和生活用水系统,并按区域或流域,根据技术经济、自然环境、卫生等因素以及各种污染源的情况、制定统一的区域水质管理规划,把生产和生活活动对自然资源的需要纳入能量和物质转化的总循环中去。
        70年代以来,水污染的综合防治已引起世界各国的普遍重视,改进水的处理技术,提高处理效率,降低费用和能耗,仍是重要的研究内容。为了充分利用水资源和节约能源,一些新的分离技术、循环用水技术、土地处理法和污水省能生物处理技术等是今后水污染防治技术的重要发展方向。
       
        二、废水处理方案的选择
        由于废水的组分复杂,常需几种方法配合使用,因此,废水处理的总体方案的选择是个很复杂的问题。一般都要经过这样几个处理程序:澄清—— 毒物处理——回用或排放。
        对于某种废水处理过程的选择,首先要从下述几个方面进行全面考虑,综合分析比较,应用最优化原理确定最佳方案。
        1.废水特性:主要指污染物存在的形态即是悬浮的、胶态的还是可溶件的,种类、变化规律、净化的难易程度、毒性大小、排放量等几个方面。
        2.对出水水质的要求:要了解有关部门制定的排放标准,使出水水质能达到要求。
        3.了解有关的环境因素,如企业的现状和发展规划;现有的下水流道情况;当地的水文、地质、气象情况;农渔业状况、技术设备水平及动力供应状况等,因为这些因素都会对治理方案产生影响。
        4.进行详细的处理费用分析。
        总之,废水治理方案的选择应十分慎重,要全面综合社会、经济、技术设备等各方面的因素,以制定出经济、有效、合理的治理方案。图8-42及图8-43即是两个较好的处理方案。
不要轻言放弃,否则对不起自己!
24楼2009-01-09 08:43:14
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 追忆似水流年 的主题更新
信息提示
请填处理意见