24小时热门版块排行榜    

查看: 303  |  回复: 23
当前主题已经存档。

lwj6065

木虫 (正式写手)

上个网址不对P,点网址可直接下载,希望对你有所帮助
http://www.namipan.com/d/%E5%BA% ... 4b2a1977782d830100:
11楼2009-01-08 10:26:30
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

废水处理

第八章  废水处理
水处理的基本方法

        水处理和水工业
        目前,水资源短缺和水环境污染造成的水危机已经成为我国社会经济发展的重要制约因素,为此,必须采用保护和利用相协调的水资源开采利用模式,通过对污水的净化和水体保护,使水资源不再受到破坏并能实现良性的再生循环。没有水的可持续利用和保护,社会经济的可持续发展就不可能实现。
        水工业是从事水的可持续利用和保护,并以满足社会经济可持续发展所需求的水量、水质为生产目标的特殊工业。它是随着水这种特殊产品的商品化和产业化生产而逐渐形成和完善的新兴工业。围绕水的开采、净化、供给、保护和再生等环节而产生的各种企业和部门构成了水工业的主体,水工业涉及众多学科领域,是科技、工程、装备及综合管理技术的集成,具有很强的综合性。
        水处理是给水处理和废水处理的简称,它是水工业科学技术的一个重要组成部分。50年代以前,给水处理和废水处理涵义的划分是很清楚的。从天然水源取水,为供生活或工业的使用(特别是生活使用)而进行的处理,称为给水处理;为了安全排放的目的,对于使用过而废弃的水所进行的处理,称为废水处理。但自从水的污染日益严重,水源逐渐紧张以来,给水处理与废水处理的界限也就逐渐模糊起来。现在,废水也可以作为水源,经处理后以供工业用水甚至生活用水。为了废水的再生或再用所进行的处理,就其水质来说是废水处理,就其处理的目的来说则属给水处理。在这种新形势下,笼统地使用水处理或水质控制这样的术语,可能更为方便和贴切。
       
        水处理内容
        水处理的主要内容可概括为以下三种:(1)去除水中影响使用的杂质以及对污泥的处置,这是水处理的最主要内容;(2)为了满足用水的要求,在水中加入其他物质以改变水的性质,如食用水中加氟以防止龋齿病,循环冷却水中加缓蚀剂及阻垢剂以控制腐蚀及结垢等;(3)改变水的物理性质的处理,如水的冷却和加热等。本章只讨论去除水中杂质的方法。
       
        水处理的方法分类
        废水中所含污染物的种类是多种多样的,不能预期只用一种方法就可以将所有的污染物都去除干净,因此水处理的方法也多种多样。根据不同的分类原则,通常对废水处理方法可做如下分类。
按废水处理的程度来分类  
        一般划分为一级处理、二级处理和三级处理( 深度处理、高级处理)。
        一级处理主要是预处理,多采用物理方法或简单的化学方法(如初步中和酸碱度)去除废水中的悬浮固体、胶体、悬浮油类等污染物。一级处理的处理程度低,一般达不到规定的排放要求,尚须进行二级处理。
        二级处理主要是清楚可分解或氧化的呈胶状或溶解状的有机污染物,多采用较为经济的生物化学处理法。废水经过二级处理之后,一般可达到排放标准,但可能会残存有微生物以及不能降解的有机物和氮、磷等无机盐类,它们数量不多,通常对水体的危害不大。
        三级治理又称深度治理,只在有特殊要求时方才采用。它是将二级治理后的废水,再用物理化学技术做进一步的处理,以便去除可溶性的无机物和不能分解的有机物,去除各种病毒、病菌、磷、氮和其它物质,最后达到地面水、工业用水或接近生活用水的水质标准。
       
        表8-1  废水的分级处理
处理级别        污染物质        处理方法       
一级处理        悬浮或胶态固体、悬浮油类、酸、碱        格栅、沉淀、浮上、过滤、混凝、中和       
二级处理        可生化降解的有机物        生物化学处理       
三级处理        难生化降解的有机物、溶解态的无机物、病毒、病菌、磷、氮等        吸附、离子交换、电渗析、反渗透、超滤、化学处理法       
       
按水中污染物的化学性质是否改变来分类
        水处理方法可分为分离处理、转化处理和稀释处理三大类。
        分离处理:是通过各种力的作用,使污染物从水中分离出来。一般来说,在分离过程中并不改变污染物的化学性质。
        转化处理:是指通过化学的或生物化学的作用,将污染物转化为无害的物质,或转化为可分离的物质,然后再进行分离处理,在这一过程中污染物的化学性质发生了变化。
        稀释处理:则既不把污染物分离出来,也不改变污染物的化学性质,而是通过稀释混合,降低污染物的浓度,从而使其达到无害的目的。
按处理过程中发生的变化分类
        可分为物理处理法、化学处理法、物理化学法和生物处理法。物理法是利用物理作用来分离水中的悬浮物,处理过程中只发生物理变化。常用的物理处理方法有:格栅、筛滤、过滤、沉淀和浮上等。化学法是利用化学反应的作用来处理水中的溶解物质或胶体物质。处理过程中发生的是化学变化。常用的化学处理方法有:中和法、化学沉淀法、氧化还原法等。物理化学法是运用物理和化学的综合作用使废水得到净化的方法。物理化学法处理废水既可以是独立的处理系统,也可以是与其它方法组合在一起使用。其工艺的选择取决于废水的水质、排放或回收利用的水质要求、处理费用等。如为除去悬浮和溶解的污染物而采用的混凝法和吸附法就是比较典型的物理化学处理法。常用的物理化学处理方法有:吸附法、离子交换法以及膜技术(电渗析、反渗透、超滤等)。生物法则是利用微生物的作用去除水中胶体的和溶解的有机物质。常用的生物处理法有:好氧活性污泥法、生物膜法,厌氧消化池法等。本章将按后一种分类原则对各种主要的水处理方法加以介绍
不要轻言放弃,否则对不起自己!
12楼2009-01-09 08:34:21
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

物理处理方法
        物理处理方法主要用于分离废水中的悬浮物质,常用的方法有:重力分离法、离心分离法、过滤法以及蒸发结晶法等。该方法最大的优点是简单、易行,并且十分经济。
       
一、筛滤
        筛滤是去除废水中粗大的悬浮物和杂物,以保护后续处理设施能正常运行的一种预处理方法。筛滤的构件包括平行的棒、条、金属网、格网或穿孔板。其中由平行的棒和条构成的称为格栅;由金属丝织物或穿孔板构成的称为筛网。其中格栅去除的是那些可能堵塞水泵机组及管道阀门的较粗大的悬浮物;而筛网去除的是用格栅难以去除的呈悬浮状的细小纤维。
        根据清洗方法,格栅和筛网都可设计成人工清渣或机械清渣两类。当污染物量大时,一般应采用机械清渣,以减少工人劳动量。
        1.格栅
        格栅是由一组平行的金属栅条制成的框架,斜置在废水流经的管道上或泵站集水池的进口处,或取水口进口端部,用以截留水中粗大的悬浮物和漂浮物,以免堵塞水泵及沉淀池的排泥管。格栅通常是废水处理流程的第一道设施。
        格栅本身的水流阻力并不大,水头损失只有几厘米,阻力主要产生于筛余物堵塞栅条。一般当格栅的水头损失达到10~15cm时就该清洗。
        截留在格栅上的污染物,可用手工清除或机械清除。目前许多废水处理厂,为了消除卫生条件恶劣的人工劳动,一般都改用机械自动清除式格栅。人工清除污物的格栅见图8-1。
        格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条的间隙,可分为用粗格栅(50~100mm)、中格栅(10~40mm)、细格栅(3~10mm)三种。
        新设计的废水处理厂一般都采用粗、中两道格栅,甚至采用粗、中、细三道格栅。我国目前采用的机械格栅的栅条间距大都在20mm以上,多采用50mm左右。机械格栅的间距过小则易使耙齿卡在格栅间。机械格栅的倾斜度较人工格栅的大,一般为60O~70o,采用电力系统或液压系统传动。齿耙用链条或钢丝绳拉动,移动速度一般为2m/min左右。
        图8-2所示为履带式机械格栅的一种。格栅链条作回转循环转动,齿耙固定在链条上,并伸入栅隙间。这种格栅设有水下导向滑轮,利用链条的自重自由下滑,齿耙在移动过程中将格栅上截留的悬浮物清除掉。
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
        2.筛网
        筛网主要用于截留尺寸在数毫米至数十毫米的细碎悬浮态杂物,尤其适用于分离和回收废水中的纤维类悬浮物和动植物残体碎屑。这类污染物容易堵塞管道、孔洞或缠绕于水泵叶轮。用筛网分离具有简单、高效、运行费用低廉等优点。
        筛网过滤装置很多,有振动筛网、水力筛网、转鼓式筛网、转盘式筛网、微滤机等。不论何种形式,其结构既要截留污物,又要便于卸料及清理筛面。
        图8-3为一种水力回转筛的结构示意图,它由锥筒回转筛和固定筛组成。回转筛的小头端用不透水的材料制成,内壁装设固定的导水叶片。当进水射向导水叶片时,便推动锥筒旋转,悬浮物被筛网截留,并沿斜面卸到固定筛上进一步脱水;水则穿过筛孔,流入集水槽。
       
        3.筛余物的处置
可将收集的筛余物运至处置区填埋或与城市垃圾一起处理;当有回收利用价值时,可送至粉碎机或破碎机磨碎后再用;对于大型系统,也可采用焚烧的方法彻底处理。
不要轻言放弃,否则对不起自己!
13楼2009-01-09 08:35:12
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

二、沉淀与上浮
        沉淀与上浮是利用水中悬浮颗粒与水的密度差进行分离的基本方法。当悬浮物的密度大于水时,在重力作用下,悬浮物下沉形成沉淀物;当悬浮物的密度小于水时,则上浮至水面形成浮渣(油)。通过收集沉淀物和浮渣可使水获得净化。沉淀法可以去除水中的砂粒、化学沉淀物、混凝处理所形成的絮体和生物处理的污泥,也可用于沉淀污泥的浓缩。上浮法主要用于分离水中轻质悬浮物,如油、苯等,也可以让悬浮物粘附气泡,使其视密度小于水,再用上浮法除去。
        1.沉淀
        沉淀是水处理中广泛应用的一种方法,主要用于去除粒径在20~100m以上的可沉固体颗粒。对胶体粒子(粒径约为1~100nm)和粒径为100~10000nm的细微悬浮物来说,由于布朗运动、水合作用,尤其是微粒间的静电斥力等原因,它们能在水中长期保持悬浮状态,因此不能直接用重力沉降法分离,而必须首先投加混凝剂来破坏它们的稳定性,使其相互聚集为数百微米以至数毫米的絮凝体,才能用沉降、过滤和气浮等常规固液分离法予以去除。
        (1)沉淀类型  根据水中悬浮颗粒的浓度及絮凝特性(即彼此粘结、团聚的能力),通常分为下述四种沉淀类型。
        第一类是自由(或分离)沉淀:沉淀过程中,颗粒呈离散状态,彼此互不聚合、粘合或干扰,而是单独地进行沉降。因而,颗粒的物理性质(大小、形状、比重等)在此过程中均不发生任何变化。在废水中悬浮物的浓度不太高、颗粒多为无机物时常发生自由沉淀,如在沉砂池中,砂粒的沉降便是典型的自由沉淀。
        第二类是絮凝或混凝沉淀:此种类型废水中的悬浮物浓度虽不很高,但沉淀过程中悬浮物的颗粒却具有附聚、凝聚的性能,造成了颗粒的相互粘合,结成较大的絮凝体或混凝体,导致悬浮物颗粒及其沉降速度随着沉降深度的增加而增加。例如,经絮凝的泥土在水中的沉淀,为了提高沉淀效率,常向废水中投加絮凝剂或混凝剂,使水中的胶体悬浮物颗粒失去稳定性后,相互碰撞和附聚,搭接成为较大的颗粒或絮状物,从而使悬浮物更容易从水中沉淀分离出来。
        混凝沉淀(有时也称混凝澄清)是水处理中的常规方法,多用于给水处理,但目前在废水处理中也得到了广泛应用。它既可以自成独立的处理系统,又可以与其它单元过程组合,作为预处理、中间处理和最终处理过程。由于需要投加化学药剂而产生絮凝作用,故此种沉淀属于化学处理的范畴。
        第三类是拥挤沉淀或浅层沉淀:当废水中悬浮物的浓度增加到一定程度时,由于悬浮物浓度较高而发生颗粒间的相互干扰,造成沉降速度减小,甚至互相拥挤在一起,使悬浮物颗粒形成绒体(毯状)状的大块面积的沉降,并在下沉的固体层与上部的清液层之间有明显的交界面。例如,高浊度水、活性污泥等。
        第四类是压缩沉淀:当悬浮液中的悬浮固体浓度很高时,颗粒互相接触,互相支撑,在上层颗粒的重力作用下,下层颗粒间隙中的水被挤出,颗粒相对位置不断靠近,颗粒群体被压缩。压缩沉淀发生在沉淀池的底部,进行得很缓慢。
        对于不同的工业废水,在不同的处理阶段中,上述四种沉淀现象都有发生。
        (2)沉淀设备  大部分工业废水含有的无机或有机悬浮物,可通过沉淀池实现沉淀。对沉淀池的要求是能最大限度地除去废水中的悬浮物,以减轻其它净化设备的负担。沉淀池的工作原理是让废水在池中缓慢地流动,使悬浮物在重力作用下沉降。根据其功能和结构的不同,可以建造出不同类型的沉淀池。
        根据废水在池中的流动方向,可将沉淀池分为平流式、竖流式、辐流式和旋流式四种基本型式,它们各具特点,可适用于不同的场合。如平流式池,构造简单,沉淀效果较好,但占地面积较大,排泥存在的问题较多,目前大、中、小型废水处理厂均有采用;竖流式池,占地面积小,排泥较方便,且便于管理,然而池深过大,施工困难,使池的直径受到了限制,因此一般仅适用于中小型废水处理厂使用;辐流式池,最适宜于大型水处理厂采用,有定型的排泥机械,运行效果较好,但要求较高的施工质量和管理水平。
        一般,废水在沉淀池中的停留时间为1~3小时,悬浮物的去除率约为50~70%。
        图8-4为设有链带式刮泥机械的平流式沉淀池。水通过进水槽和孔口流入池内,在池子澄清区的半高处均匀地分布在整个宽度上。水在澄清区内缓缓流动,水中悬浮物逐渐沉向池底。沉淀池末端设有溢流堰和出水槽,澄清水溢过堰口,通过出水槽排出池外。如水中有浮渣,堰口前需设挡板及浮渣收集设备。在沉淀池前端设有污泥斗,池底污泥在刮泥机的缓慢推动下刮入污泥斗内。污泥斗内设有排泥管,开启排泥阀时,泥渣便由排泥管排出池外。
        图8-5为圆形竖流式沉淀池。水由中心管的下口进入池中,由于反射板的拦阻而流向四周分布于整个水平断面上,缓缓向上流动。当沉降速度超过水的上升流速时,颗粒就向下沉降到污泥斗,澄清后的水由池四周的堰口溢出池外。竖流式沉淀池也可做成方形,相邻池子可合用池壁以使布置紧凑。
不要轻言放弃,否则对不起自己!
14楼2009-01-09 08:35:41
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

图8-6为辐流式沉淀池的结构示意图。原水经进水管进入中心筒后,通过筒壁上的孔口和外围的环形穿孔挡板,沿径向呈辐射状流向沉淀池周边,由于过水断面的不断增大,因此,流速逐渐变小,颗粒沉降下来,澄清水经溢流堰或淹没孔口汇入集水槽排出。沉于池底的泥渣,由安装于衍架底部的刮板刮入泥斗,再借静压或污泥泵排出。
        斜板(斜管)沉淀池:为了提高沉淀池处理能力,缩小体积和占地面积,设计了斜板(斜管)沉淀池,如图8-7所示。它是将一组平行板或平行管,相互平行地重迭在一起,以一定的角度安装在平流沉淀池中,水流从平行板或平行管的一端流到另一端,致使每两块板间或每一根方管,都相当于一个很浅的小沉淀池。其优点是:利用了层流原理,水流在板间或管内流动具有较大的湿润周边,较小的水力半径,所以雷诺数较低,对沉淀极为有利。此外,斜板或斜管大大地增加了沉淀面积,提高了沉淀效率,缩短了颗粒的沉降距离,减少了沉淀时间。研究表明,斜板沉淀池能使处理能力提高3~7倍,甚至在10倍以上。因此,斜板沉淀池是一种很有发展前途的高效能的沉淀设备。
        废水经过沉淀池处理以后得到了一定程度的净化,但同时却产生了污泥或沉渣,因此,从控制污染的需要出发,尚须对这些污泥或沉渣进行妥善的处理或处置。
        2.上浮与气浮法
        在石油开采、炼制及石油化工,炼焦、煤炭气化和其副产品的回收,食品及其它工业中都排放含油和低密度固体的废水。在这种废水治理中,常利用密度差以上浮或气浮法分离废水中低密度的固体或油类污染物。此法,可以去除废水中60μm以上的油粒,以及大部分固体颗粒污染物。
        (1)基本原理
        废水中的油类污染物质,除重质焦油的比重大于1.1外,其余的油类物质的比重均小于1,并以四种状态存在于水中。直径大于60μm的分散性颗粒,是易从废水中分离出来的可浮油,漂浮在水面而被除去,石油类废水中这种状态的油含量约占60~80%;细分散的油和乳化油,粒径约在l0~60μm之间,不易上浮,且难以从废水中除去,通常采用强制气浮的办法除去;溶解油,一般油品的溶解度都很小,约为5~15mg/L,难于用物理法分离出来。
        气浮法就是在废水中通入细小而均匀的气泡使难沉降的固体颗粒或细小的油粒等乳状物粘附上许多气泡,成为一种絮凝体,借气泡上浮之力带到水面上来,形成浮渣或浮油而被除去。气浮法可以从废水中分离出脂肪、油类、纤维和其它低密度的固体污染物,可用于浓缩活性污泥处理法排出的污泥以及化学混凝处理过程中产生的絮状化学污泥等。
        气浮法按气泡产生的不同方式,分为鼓气气浮、加压气浮和电解气浮。产生气泡的方法一般分两种:一是溶气法,将气体压入盛有废水的溶气罐中,在水-气充分接触下,使气在水中溶解并达到饱和,故又称加压溶气气浮。此种气泡的直径一般小于80μm;二是散气法,主要采用多孔的扩散板曝气和叶轮搅拌产生气泡,因此气泡直径较大,约在1000μm左右。试验表明,气泡的直径越小,能除去的污染物颗粒就越细,净化效率也越高。故目前工业废水处理中,多采用溶气法。
        (2)设备
        对于含油类物质的工业废水,常先采用隔油池去除可浮油,再采用气浮法除去乳化油,然后根据需要再采取其它处理方法,使其进一步净化。
        隔油池:隔油池的型式较多,主要有平流式隔油池(API)、平行板式隔油池(PPI)、波纹斜板隔油池(CPI)等。
        图8-8所示为平流式隔油池(API),其构造与平流式沉淀池相仿,在澄清区中油类上浮与水分离,同时其它固体杂质沉淀。截留下来的油类产品,由可以自由转动的集油管定期排除。这种隔油池占地面积较大,水流停滞时间较长(1.5~2.0小时),水平流速大约为2~5mm/s。由于操作与维护容易,使用比较广泛,但除油的效率较低。
        若在平流式隔油池内安装许多倾斜的平行板,便成了平行板式隔油池(PPI)。斜板的间距为100mm。这种隔油池的特点是油水分离迅速,占地面积小(只为API的1/2)。但结构复杂,维护和清理都比较困难。倾斜板式隔油池的结构示于图8-9中。
        若将PPI隔油池内的平行板改换成波纹斜板,就变成了波纹板隔油池(CPI)。其内板的间距为20~40mm,倾角为45°。水流沿板面向下,油滴沿板的下表面向上流动,汇集于集油区内用集油管排出,处理后的水从溢流堰排出。这种隔油池的分离效率更高,池内水的停留时间约为3Omin,占地面积只有PPI式的2/3。
        气浮池:根据水流方向的不同,分为平流式和竖流式两种气浮池。通常,废水在分离室的停留时间不少于60min。平流式气浮池的长宽比应大于3,水平流速约为4~10mm/s,工作区水深1.5~2.5m。竖流式气浮池为圆形或方形池,废水从下部进入,向上流动,油渣聚集于水面,借助上部的刮渣机将油渣收集到池外。竖流式气浮池的高度一般为4~5m,长、宽或直径在9~l0m以内,与竖式沉淀池类似。
        加压气浮工艺流程,按加压情况分为部分废水加压、全部废水加压和部分回流水加压三种。加压气浮装置由加压水泵、空气压缩机、溶气罐、溶气释放器和气浮池等组成。
        部分回流加压气浮是将处理后的部分废水加压溶气,回流量一般为20~50%。通常认为这种流程治理的效果较好,不会打碎絮凝体,出水的水质稳定,加压泵及溶气罐的容量及能耗等都较小,但气浮池的体积则相应增大。目前国内较多采用这种部分回流加压气浮工艺流程,其流程示于图8-10。
        三、过滤
        1. 过滤的类型
        过滤是去除悬浮物,待别是去除浓度比较低的悬浊液小微小颗粒的一种有效力法。过滤时,含悬浮物的水流过具有一定孔隙率的过滤介质,水中的悬浮物被截留在介质表面或内部而除去。根据所采用的过滤介质不同,可将过滤分为下列几类。
        (1)格筛过滤  过滤介质为栅条或滤网,用以去除粗大的悬浮物,如杂草、破布、纤维、纸浆等,其典型设备有格栅、筛网和微滤机。
        (2)微孔过滤  采用成型滤材,如滤布、滤片、烧结滤管、蜂房滤芯等,也可在过滤介质上预先涂上一层助滤别(如硅藻土)形成孔隙细小的滤饼,用以去除粒径细微的颗粒。其定型的商品设备很多。
        (3)膜过滤  采用特别的半透膜作过滤介质在一定的推动力(如压力、电场力等)下进行过滤,由于滤膜孔隙极小且具选择性,可以除去水中细菌、病毒、有机物和溶解性溶质。其主要设备有反渗透、超过滤和电渗析等。
        (4)深层过滤  采用颗粒状滤料,如石英砂、无烟煤等。由于滤料颗粒之间存在孔隙,原水穿过一定深度的滤层,水中的悬浮物即被截留。为区别于上述三类表面或浅层过滤过程,将这类过滤称之为深层过滤,简称过滤。在给水处理户,常用过滤处理沉淀或澄清池出水,使滤后出水浑浊度满足用水要求。在废水处理中,过滤常作为吸附、离子交换、膜分离法等的预处理手段,也作为生化处理后的深度处理,使滤后水达到回用的要求。
       
        2. 过滤的原理
        快滤池分离悬浮颗粒涉及多种因素和过程,一般分为三类,即迁移机理、附着机理和脱落机理。
        (1)迁移机理
        悬浮颗粒脱离流线而与滤料接触的过程,就是迁移过程。引起颗粒迁移的原因主要有如下几种。
        1)筛滤 颗粒比滤层孔隙大的被机械筛分,截留于过滤表面上,然后这些被截留的颗粒形成孔隙更小的滤饼层,使过滤水头增加,甚至发生堵塞。这种表面筛滤没能发挥整个滤层的作用。在普通快滤池中,悬浮颗粒一般都比滤层孔隙小,因而筛滤对总去除率贡献不大。当悬浮颗粒浓度过高时,很多颗粒有可能同时到达二个孔隙,互相拱接而被机械截留。
        2)拦截  小颗粒随流线流动在流线上与滤料表面接触。其去除概率与颗粒直径的平方成正比,与滤料粒径的立方成反比。
        3)惯性  当流线绕过滤料表面时,具有较大动量和密度的颗粒因惯性冲击而脱离流线碰撞到滤料表面上。
        4)沉淀    如果悬浮物的粒径和密度较大,将存在一个沿重力方向的相对沉淀速度。在力作用下,颗粒偏离流线沉淀到滤料表面上。沉淀效率取决于颗粒沉速和过滤水速的相对大小和方向。
        5)布朗运动  对于微小悬浮颗粒,由于布朗运动而扩散到滤料表面。
        6)水力作用  由于滤层中的孔隙和悬浮颗粒的形状是极不规则的,在不均匀的剪切流场中,颗粒受到不平衡力的作用不断地转动而偏离流线。
        实际过滤中,悬浮颗粒的迁移将受到上述各种机理的作用,它们的相对重要性取决于水流状况、滤层孔隙形状及颗粒本身的性质(粒度、形状、密度等)。
        (2)附着机理
        1)接触凝聚  在原水中投加凝聚剂,压缩悬浮颗粒和滤料颗粒表面的双电层后,但尚未生成微絮凝体时,立即进行过滤。此时水中脱稳的胶体很容易与滤料表面凝聚,"即发生接触凝聚作用。快滤池操作通常投加凝聚剂,因此接触凝聚是主要附着机理。
        2)静电引力  由于颗粒表面上的电荷和由此形成的双电层产生静电引力和斥力。当悬浮颗粒和滤料颗粒带异号电荷则相吸,反之,则相斥。
        3)吸附  悬浮颗粒细小,具有很强的吸附趋势,吸附作用也可能通过絮凝剂的架桥作用实现。絮凝物的一端附着在滤料表面,而另一端附着在悬浮颗粒上。某些聚合电解质能降低双电层的排斥力或者在两表面活性点间起键的作用而改善附着性能。
        4)分子引力  原子、分子间的引力在颗粒附着时起重要作用。万有引力可以迭加,其作用范围有限(通常小于50μm),与两分子的间距的6次方成反比。
        (3)脱落机理
        普通快滤池通常用水进行反冲洗,有时先用或同时用压缩空气进行辅助表面冲洗。在反冲洗时,滤层膨胀一定高度,滤科处于流化状态。截留和附着于滤料上的悬浮物受到高速反洗水的冲刷而脱落;滤料颗粒在水流中旋转,碰撞和摩擦,也使悬浮物脱落。反冲洗效果主要取决于冲洗强度和时间。当采用同向流冲洗时,还与冲洗流速的变动有关。
        3. 过滤装置
        通常,过滤装置(filter)包括快滤池和慢滤池,两者的过滤机理是不同的。
        慢滤池(slow filter)也称表层过滤,主要利用顶部的滤膜截留悬浮固体,同时发挥微生物对水质的净化作用。这种滤池生产水量少、滤速慢(<10m/d)、占地大;特别是在污水处理过程中.需要从污水中去除并积存在滤床中的污泥量十分庞大;而且污泥粘而易碎,很快就会在滤料表面出现泥封;而当加大过滤水头时,则容易发生污染物穿透现象。目前慢滤池方式在水处理,特别是污水处理中应用较少。
        快滤池(rapid filter)也称深层过滤池,滤速较快(>100m/d),其构造如图8-11所示。
       
        图8-11 快滤池构造
        在过滤过程中,悬浮颗粒能吸附在滤料表面,即“接触絮凝”起了主要作用,而其它作用如截留和沉降处于次要地位。由于滤料表面通常带负电,要使也带负电的悬浮颗粒附着在滤料表面,必须对滤前水进行预处理,通常是化学混凝处理(如果去除对象是生物污泥絮体,则不需化学混凝),以改变悬浮颗粒所带电荷。因此,快滤池可以定义为:利用滤层中粒状材料所提供的表面积截留水中已经过混凝处理的悬浮固体的设备。
        滤料的最基本功能是提供粘着水中悬浮固体所需要的面积,至于悬浮团体的可粘着性可以由絮凝过程来实现。因此,在某种意义上,滤料本身的性质有时并不重要,一般除了长期使用的天然石英砂以外,还有加工成合乎规格的颗较材料,如无烟煤、大理石、白云石、花岗石、石榴石、磁铁矿和钛铁矿等;一些无机材料经烧结、破碎后也可以做滤料,如陶粒滤料和陶瓷油料;同样,也可以用人工合成的粒状材料,如纤维球、塑料珠等。在选择滤料时应满足:足够的机械强度;足够的化学稳定性;合适的颗粒粒径级配和空隙率;较低的成本。当处理废水时,由于废水水质复杂,悬浮物浓度高、粘度大,油料要求粒径更大些,机械强度更高些,更耐腐蚀.
        单一油料新装入滤池时,沿滤层高度的级配是均匀的,滤料颗粒所形成的空隙率分布也是均匀的,即沿着滤层高度的每一点都具有容纳同样多的悬浮固体的能力。但是,当滤池进行反冲洗后.由于水力分级的作用,原来的均匀滤层就变成了分级滤料滤层,即滤料按从小到大的顺序排列。这样,在过滤时就出现了两个缺点:上部滤料空隙小,因此能容纳的悬浮固体就比下部滤层少,整个滤层的容纳能力不均匀;水流通过上部滤层的阻力比下部大,在截留悬浮固体后变得更严重,从而影响了整个滤层的发挥。理想的滤层应该是,沿着过滤的水流方向,滤层中滤料的粒径从大到小排列,同时空隙率也从大到小排列。此时,进入滤池的水先接触到的那部分滤层能够比后接触到的那部分滤层多容纳悬浮固体,而且这部分的空隙率本来较大,容纳了更多的悬浮固体后仍然保留了一定的空隙大小,允许水中的悬浮颗粒进入滤层内部,从而当过滤水头损失达到最大允许值的时候,整个滤层截留的能力都得到了充分的发挥。为了这个目的,人们对普通的滤池作了改进:改变过滤的水流方向,如上升流、双向流、辐向流等;选用适当的粒度和密度的滤料配合,如粗粒深层过滤、均匀滤料过滤和多层过滤等。
        滤池本身包括滤料层、承托层、配水系统、集水渠和洗砂排水槽五个部分。快滤池管廊内有原水进水、清水出水、冲洗排水等主要管道和与其相配的控制闸阀。
        快滤池的运行过程主要是过滤和冲洗两个过程的交替循环。过滤是生产清水过程,待过滤进水经来水干管和洗砂排水槽流入滤池,经滤料层过滤截留水中悬浮物质,清水则经配水系统收集,由清水干管流出滤池。在过滤中,由于滤层不断截污,滤层孔隙逐渐减小,水流阻力不断增大,当滤层的水头损失达到最大允许值时,或当过滤出水水质接近超标时,则应停止滤池运行,进行反冲洗。一般滤池一个工作周期应大于8~12h。
        滤池反冲洗时,水流逆向通过滤科层,使随层膨胀、悬浮,借水流剪切力和颗粒碰撞摩擦力清洗滤料层并将滤层内污物排出。反冲洗水一般由冲洗水箱或冲洗水泵供给,经滤池配水系统进入滤池底部反冲洗;冲洗废水由洗砂排水槽、废水渠和排污管排出。
       
        4. 滤料的选择
        滤料的种类、性质、形状和级配等是决定油层截留杂质能力的重要因素。油料的选择应满足以下要求。
        ①滤料必须具有足够的机械强度,以免在反冲洗过程中很快地磨损和破碎。一般磨损率应小于4%,破碎率应小于1%,磨损破碎率之和应小于5%。
        ②滤料化学稳定性要好,不少国家对滤料盐酸可溶率上限值有所规定,如日本规定不大于3.5%,美国规定不大于测,法国规定不大于2%,并且对不同滤料,其值有所不同。
        滤料应不含有对人体健康有害及有毒物质,不含对生产有害、影响生产的物质。
        ④滤料的选择应尽量采用吸附能力强、截污能力大、产水量高、过滤出水水质好的滤料,以利于提高水处理厂的技术经济效益。
        此外,滤料宜价廉、货源充足和就地取材。
        具有足够的机械强度、化学稳定性好和对人体无害的分散颗粒材料均可作为水处理滤科,如石英砂、无烟煤粒、矿石粒以及人工生产的陶粒滤科、瓷料、纤维球、塑料颗粒、聚苯乙烯泡沫珠等,目前应用最为广泛的是石英砂和无烟煤。
不要轻言放弃,否则对不起自己!
15楼2009-01-09 08:36:11
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

化学处理方法
        废水的化学处理是利用化学反应的原理及方法来分离回收废水中的污染物,或是改变它们的性质,使其无害化的一种处理方法。化学法处理的对象主要是废水中可溶解的无机物和难以生物降解的有机物或胶体物质。
        本章主要介绍化学处理法中常用的化学混凝法、中和法、化学沉淀法、氧化还原法和电化学法。
       
        一、混凝
        (一)化学混凝法
        化学混凝法简称混凝法,在废水处理中可以用于预处理、中间处理和深度处理的各个阶段。它除了除浊、除色之外,对高分子化合物、动植物纤维物质、部分有机物质、油类物质、微生物、某些表面活性物质、农药,汞、镉、铅等重金屑都有一定的清除作用.所以它在废水处理中的应用十分广泛。
        混凝法的优点是:设备费用低、处理效果好,操作管理简单。缺点是要不断向废水中投加温暖刑,运行费用较高。
        1. 混凝法的基本原理
        废水中的微小悬浮物和胶体粒子很难用沉淀方法除去,它们在水中能够长期保持分散的悬浮状态而不自然沉降,具有一定的稳定性。混凝法就是向水中加入混凝剂来破坏这些细小粒子的稳定性.首先使其互相接触而聚集在一起,然后形成絮状物并下沉分离的处理方法。前者称为凝聚,后者称为絮凝,一般将这二个过程通称为混凝。具体地说,凝聚是指使胶体脱稳并聚集为微小絮粒的过程,而絮凝则是使微絮粒通过吸附、卷带和架桥而形成更大的聚体的过程。
        影响混凝效果的因素
        (1)废水的pH值  水的pH值能影响颗粒表面的电荷和絮体的沉淀过程,它是一个很重要的参数。经验表明,对某一种废水,每一种混凝剂都有一个合适的pH值范围,在此范围内,经混合凝聚后废水的残余浊度最小。所以pH值对混凝的影响视混凝剂品种而异。例如,以硫酸铝为混凝剂时,当pH在5.7~7.8范围内时,形成带正电荷的离子和胶体,如Al(OH)2+、Al(OH)+和Al(OH)3等,有较好的混凝效果。若pH值>8.2时,则会使Al(OH)3胶体溶解,产生负离子,Al(OH)3++OH-=AlO2-+2H2O,对含有负电荷胶体的废水则不起凝聚作用,影响处理效果。而用三价铁盐时,pH值在6.0~8.4之间都有较好的处理效果。
        (2)水温  水温对混凝效果有明显的影响,无机盐类混凝剂的水解是吸热反应,水温低不利于水解进行,特别是硫酸铝,当水温低于5℃时,水解速度极慢。同时水温低,粘度大,也不利于脱稳胶粒的相互絮凝,影响处理效果。这时可投加高分子助凝剂以改善处理效果,或用气浮法代替沉淀法作为后续处理过程。
        (3)废水中杂质成分、性质、浓度  例如天然水中含粘土类杂质为主,需投加混凝剂量较小,而废水中含大量的有机物时,需加入较多的混凝剂才有混凝效果。废水中杂质的影响较为复杂,实际应用时,还应以实验结果为依据来选择混凝剂和确定投加量。
        (4)搅拌  搅拌对混合、反应、凝聚几个阶段都有影响,因此,搅拌—定要适度。一般在混凝剂混合阶段,要求快速、剧烈的搅拌,以使混凝剂迅速、均匀地扩散到全部水中,创造良好的水解和聚合条件,使胶体脱稳并借助颗粒的布朗运动和湍动的水流凝聚,此阶段不要求形成大的絮凝体。在混凝反应阶段,要求形成大而具有良好沉淀性能的絮凝体,此时过于激烈的搅拌反而会打碎已凝聚的絮状沉淀物,不利于混凝沉淀,所以此阶段搅拌的强度和水流速度应随絮凝体的结大而降低。
       
        2. 混凝剂
        (1) 混凝剂的分类
        混凝剂可分为无机混凝剂、有机混凝剂和高分子混凝剂三类。国内多采用铝、铁盐类无机混凝剂。有机和高分子混凝剂近年来也有很大发展,作用远比无机混凝剂优越,特别是高分子混凝剂由于具有以下优点而日益受到重视。
            ①生成的絮凝物大、易沉降分离;
            ②生成的絮凝物强度大、不易被破坏;
            生成的污泥量少,污泥的沉降、脱水性能良好;
            用量小(为无机凝聚剂的1/30~1/200);
            不易受pH、温度、共同存在的其它盐类的影响;
            和无机混凝剂并用,可取得更好的效果。
        (2) 混凝剂的选择及应用条件
        混凝剂的选择及使用量要根据废水的具体性质而定,总的原则是所用的混凝剂必须价廉、易得,使用量少,效率高。生成的混凝物易沉降分离。使用无机混凝剂时要注意其适用的pH值范围,一般在投加无机盐混凝剂后再添加pH值调节剂。对高分子混凝剂,为了充分发挥其在水中的化学架桥作用,应选用能在水中均匀分散;溶解,具有吸附活性基因(非离子型、阳离子型和阴离子型三类)的高分子化合物、水溶性高分子化合物。为了使其在水中处于较大的分散状态.一般先用纯水或软水溶解配成一定浓度的溶液,然后再加到待处理废水中去。因为这些高分子化合物往往会受到水质(如含有钙、铁盐和氧化剂的废水)的影响。使分子的扩散和离子基的离解受到抑制,处理效果下降。
        铝盐、铁盐和聚丙烯酰胺是常用的几种混凝剂。
        3. 助凝剂
        有时当单用混凝剂不能取得较好的效果时,可以投加某种称为助凝剂的辅助药剂来调节、改善混凝条件,提高处理效果。助凝剂主要起以下几个作用:①通过投加酸性或碱性物质来调整pH值;②投加活化硅胶、骨胶、PAM等改善絮凝体结构.利用高分子助凝剂的吸附架桥作用以增强絮凝体的密实性和沉降性能。投加氯、臭氧等氧化剂,在采用FeSO4时,可将Fe2+氧化为Fe3+,当废水中有机物过高时,也可使其氧化分解,破坏其干扰或使胶体脱稳,以提高混凝效果。
        常用的助凝剂有PAM、活化硅胶、骨胶、海藻酸钠、氯气、氧化钙等。
       
        二、氧化还原
        通过化学药剂与废水中的污染物进行氧化还原反应,从而将废水中的有毒有害污染物转化为无毒或者低毒物质的方法称为氧化还原法。
        在氧化还原反应中,参加化学反应的原子或离子有电子得失,因而引起化合价的升高或降低。失去电子的过程叫氧化,得到电子的过程叫还原。
        根据有毒有害物质在氧化还原反应中被氧化或还原的不同,废水中的氧化还原法又可分为药剂氧化法和药剂还原法两大类。在废水处理中常采用的氧化剂有:空气中的氧、纯氧、臭氧、氯气、漂白粉、次氮酸钠、三氯化铁等。常用的还原剂有:硫酸亚铁、氯化亚铁、铁屑、锌粉、二氧化硫等。
        药剂氧化法中常用的方法有臭氧氧化法、氯氧化法、高锰酸钾氧化法等。
        臭氧的氧化性在天然元素中仅次于氟,可分解一般氧化剂难于破坏的有机物,并且不产生二次污染。因此广泛地用于消毒、除臭、脱色以及除酚、氰、铁、锰等。臭氧氧化处理系统中的主要设备是臭氧接触反应器。
        在氯氧化法中的氯系氧化剂包括氯气、氯的含氧酸及其钠盐、钙盐和二氧化氯。除了用于消毒外,氯氧化法还可用于氧化废水中的某些有机物和还原性物质,如氰化物、硫化物、酚、醇、醛、油类,以及用于废水的脱色、除臭等。例如氧化氰化物。在pH值大于8.5的碱性条件下用氯气进行氧化,可将氰化物氧化成无毒物质。化学反应式如下:
       
        高锰酸钾氧化法主要用于去除废水中的酚、二氧化硫、H2S等。在饮用水的处理中,这种方法主要用来杀灭藻类、除臭、除味、除铁、除锰等。该法的优点是处理后的水没有异味,氧化剂容易投配。主要缺点是处理成本高。
        药剂还原法主要用于处理含铬、含汞废水。
        通过还原可将六价铬转化为三价铬,大大减小了铬的毒性。还原过程是,在酸性条件下,向含铬废水中投加亚硫酸氢钠,将六价铬还原为三价铬。随后投加石灰或氢氧化钠,生成氢氧化铬沉淀。将沉淀物从废水中分离出来,达到处理的目的。化学反应如下:
       
        实际中常用金属还原剂来处理含汞废水,废水中的汞离子被还原为金属汞而析出,金属本身被氧化为离子而进入水中。可用于还原汞的金属有铁粉、锌粉、铜粉和铝粉等。以铁粉为例,发生如下化学反应:
       
       
        三、化学中和
        1. 废水的中和处理
        中和法就是使废水进行酸碱的中和反应,调节废水的酸碱度(pH值),使其呈中性或接近中性或适宜于下步处理的pH值范围。如,以生物处理而言,需将处理系统中废水的pH值维持在6.5~8.5之间,以便确保最佳的生物活力。
        酸碱废水的来源很广,化工厂、化学纤维厂、金属酸洗与电镀厂等及制酸或用酸过程中,都排出大量的酸性废水。有的含无机酸如硫酸、盐酸等;有的含有机酸如醋酸等;也有的是几种酸并存的情况。酸具有强腐蚀性,碱危害程度较小,但在排至水体或进入其它处理设施前,均须对酸碱废液先进行必要的回收,再对低浓度的酸碱废水进行适当地中和处理。通常废水中除含有酸或碱以外,往往还含有悬浮物、金属盐类、有机物等杂质,影响了酸、碱废水的回收与处理。
        2. 处理方法与设备
        通常采用的废水中和方法有均衡法和pH值直接控制法。
        (1)均衡法  以酸性废水和碱性废水混合中和为目的,即在均衡池中将酸性和碱性废水相混合。由于工业废水的水量和水质一般是不均衡的,往往随生产的变化而变化。为了进行水量的调节和水质的均和,减小高峰流量和高浓度废水的影响,需设置足够容积的均衡池作为预处理的一种设施或中和设备。若废水中和后达不到规定的pH值时,还需稍加废酸或废碱进行适当的调节。
        (2)pH值直接控制法  常用的方法有酸碱废水相互中和、投药中和和过滤中和法等。
        酸性废水的中和:对于酸性废水,常用药剂法和过滤法进行中和。
        投药中和法所采用的药剂有石灰、废碱、石灰石和电石渣等,但最常用的是将石灰制成乳液湿投,石灰石粉碎成细粒后干投。处理流程中包括废水调节池、石灰乳配制槽或石灰石粉碎机、投药装置、混合反应池、沉淀池以及污泥干化床等。在混合反应池中,应进行必要的搅拌,防止石灰渣的沉淀。同时,废水在其中的停留时间一般不大于5min。沉淀池中的废水,可停留1~2h,产生的沉渣容积约为废水量的10~15%,沉渣含水率为90~95%,故应在干化床上脱水干化。投药中和法,因其劳动条件较差、处理成本高、污泥较多、脱水麻烦等原因,故只在酸性废水中含有重金属盐类、有机物或有廉价的中和剂时方才采用。
        过滤中和法常以粒状的石灰石、大理石、白云石或电石渣等作为中和的滤料,酸性废水通过滤料进行中和过滤。中和硫酸废水时,宜采用白云石滤料。主要设备有:普通中和滤池,有升流式和降流式两种,滤层厚1.0~1.5m,滤料粒径3~8cm;等速升流式膨胀中和滤池,石灰石滤料及废水分别从池的顶部和底部进入,滤料粒径为0.5~3mm;高滤速(60~70m/h)或高速变速升流膨胀中和滤池,滤料粒径0.5~6mm,可以做到大颗粒不结垢,小颗粒不流失,加之废水升流式流动与产生二氧化碳气体的作用,使滤料膨胀,并互相碰撞及磨擦表面的不断更新,对酸性废水处理的效果很好;滚筒式中和器,石灰石滤料置于旋转滚筒中与酸性废水进行中和。
        碱性废水的中和:碱性废水常用废酸或酸性废水中和或与烟道气中和。
        投酸中和法是采用废强酸或酸性废水进行中和处理,所用设备和中和程序与酸性废水中和法相同。
        烟道气中和法是利用烟道气中的二氧化碳与二氧化硫溶于水中形成的酸中和碱性废水。方法是将烟道气通入碱性废水,或利用碱性废水作为除尘的喷淋水,两者均可得到良好的处理效果。但处理后废水中的悬浮物含量大为增加,硫化物、耗氧量和色度也都有所增加,还需对废水进行补充处理。
不要轻言放弃,否则对不起自己!
16楼2009-01-09 08:36:37
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

物理化学处理方法
        一、离子交换
        离子交换法是水质软化和去除水中盐的主要方法。在废水处理中用来去除金属离子和一些非金属离子。例如,可去除废水中的钙、镁、钾、钠离子以及氯离子、硫酸根离子等。这种方法的实质是利用不可溶解的离子化合物(称为离子交换树脂)上的可交换离子或基团与水中其它同性离子进行离子交换反应,类似化学中的置换反应。这种离子交换过程是可逆的。当离子交换树脂工作一段时间后,树脂被废水中的离子所饱和,不能继续交换时,可利用树脂交换过程可逆的性质,对树脂进行再生以恢复交换的能力。
        离子交换树脂是采用高分子聚合物制成的,外观呈不透明或半透明的多孔状小球颗粒。其颜色有乳白、淡黄或棕褐色,树脂粒径一般为0.3~1.2毫米。离子交换树脂含有大量可以离解的活性基团,在水中这些活性基团离解后可与水中的其它离子进行等当量的交换。离子交换树脂根据活性基团的性质可分为阳离子交换树脂和阴离子交换树脂两大类。
        阳离子交换树脂的活性基团一般是酸性的,用于交换废水中的阳离子,如果以R来表示离子交换树脂的母体,H+表示树脂上可置换的离子,M+表示废水中的阳离子,阳离子的交换过程可表示为:
       
        阴离子交换树脂的活性基团是碱性的,用于阴离子交换,这类树脂的母体若用R来表示,OH-表示树脂上可置换的离子,如废水中的阴离子为N-,其交换过程可表示为:
       
        当离子交换树脂达到饱和时,可向树脂中通入某种电解质,将被吸附的离子交换下来,使树脂得到再生。一般用强酸性(或电解质)溶液对阳离子交换树脂进行再生,用强碱溶液对阴离子交换树脂进行再生。例如,用HCl和NaOH分别对阳阴树脂进行再生,其过程可表示为:
        阳离子树脂再生  RM+HCl → RH+MCl
        阴离子树脂再生  RN+NaOH → R(OH)+NaN
        在再生过程中,被树脂吸附的废水中的离子转移到再生液中,因此用离子交换法时,还必须考虑再生液的处置。
        离子交换法的主要设备是离子交换柱,它是用耐腐蚀的金属材料制造的密闭容器,离子交换柱中放有离子交换树脂。
        目前离子交换法广泛地用于去除废水中的有害离子。如水质软化中就用钠型阳离子交换柱来去除水中的钙、镁离子。当要求既去除废水中的阳离子又去除废水中的阴离子时,则要用阳离子交换柱和阴离子交换柱串联工艺。
       
        二、吸附
        固体表面的分子或原子因受力不均衡而具有剩余的表面能,当某些物质碰撞固体表面时,受到这些不平衡力的吸引而停留在固体表面上,这就是吸附。这里的固体称吸附剂。被固体吸附的物质称吸附质。吸附的结果是吸附质在吸附剂上浓集,吸附剂的表面能降低。
        利用吸附作用进行物质分离已有漫长的历史。在水处理领域,吸附法主要用以脱除水中的微量污染物,应用范围包括脱色,除臭味,脱除重金属、各种溶解性有机物、放射性元素等。在处理流程中。吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体物及余氯等;也可以作为二级处理后的深度处理手段,以保证回用水的质量。
        利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料、吸附剂可重复使用等优点,但对进水预处理要求较高,运转费用较高,系统庞大,操作较麻烦。
        (一)、吸附机理及分类
        溶质从水中移向固体颗粒表面,发生吸附,是水、溶质和固体颗粒三者相互作用的结果。引起吸附的主要原因在于溶质对水的疏水特性和溶质对固体颗粒的高度亲合力。溶质的溶解程度是确定第一种原因的重要因素。溶质的溶解度越大,则向表面运动的可能性越小。相反,溶质的憎水性越大,向吸附接口移动的可能性越大。吸附作用的第二种原因主要由溶质与吸附剂之间的静电引力、范德华引力或化学键力所引起。与此相对应,可将吸附分为三种基本类型。
        (1)交换吸附  指溶质的离子由于静电引力作用聚集在吸附剂表面的带电点上,并置换出原先固定在这些带电点上的其它离子。通常离子交换属此范围(见第八章)。影响交换吸附势的重要因素是离子电荷数和水合半径的大小。
        (2)物理吸附  指溶质与吸附剂之间由于分子间力(范德华力)而产生的吸附。其特点是没有选择性,吸附质并不固定在吸附剂表面的特定位置上,而多少能在接口范围内自由移动,因而其吸附的牢固程度不如化学吸附。物理吸附主要发生在低温状态下,过程放热较小,约42kJ/mol或更少,可以是单分子层或多分子层吸附。影响物理吸附的主要因素是吸附剂的比表面积和细孔分布。
        (3)化学吸附  指溶质与吸附剂发生化学反应,形成牢固的吸附化学键和表面络合物,吸附质分于不能在表面自由移动。吸附时放热量较大,与化学反应的反应热相近,约84~420kJ/mol。化学吸附有选择性,即一种吸附剂只对某种或特定几种物质有吸附作用,一般为单分子层吸附。通常需要一定的话化能,在低温时,吸附速度较小。这种吸附与吸附剂的表面化学性质和吸附质的化学性质有密切的关系。
        物理吸附后再生容易,且能回收吸附质。化学吸附因结合牢固,再生较因难,必须在高温下才能脱附,脱附下来的可能还是原吸附质,也可能是新的物质。利用化学吸附处理毒性很强的污染物更安全。
        在实际的吸附过程中,上述几类吸附往往同时存在,难于明确区分。例如某些物质分子在物理吸附后,其化学键被拉长,甚至拉长到改变这个分子的化学性质。物理吸附和化学吸附在一定条件下也是可以互相转化的。同一物质,可能在较低温度下进行物理吸附,而在较高温度下所经历的往往又是化学吸附。
        (二)、吸附平衡与吸附等温式
        1. 吸附平衡
        吸附过程中,固液两相经过充分的接触后,最终将达到吸附与脱附的动态平衡。达到平衡时,单位吸附剂所吸附的物质的数量称为平衡吸附量,常用qc(mg/g)表示。对一定的吸附体系,平衡吸附量是吸附质浓度和温度的函数。为了确定吸附剂对某种物质的吸附能力,需进行吸附试验:将一组不同数量的吸附剂与一定容积的已知溶质初始浓度的溶液相混合,在选定温度下使之达到平衡。分离吸附剂后,测定液相的最终溶质浓度。根据其浓度变化,分别按下式算出平衡吸附量:
                       (8-1)
        式中  V—溶液体积,L;
        C0,Ce-分别为溶质的初始和平衡浓度,mg/L;
        W-吸附剂量,g。
        显然,平衡吸附量越大,单位吸附剂处理的水量越大。将平衡吸附量qc与相应的平衡浓度Ce作图,得吸附等温线。
        根据试验,可将吸附等温线归纳为如图8-12所示的五种类型。Ⅰ型的特征是吸附量有一极限值。可以理解为吸附剂的所有表面都发生单分子层吸附,达到饱和时,吸附量趋于定值。Ⅱ型是非常普通的物理吸附,相当于多分子层吸附,吸附质的极限值对应与物质的溶解度。Ⅲ型相当少见,其特征是吸附热等于或小于纯吸附质的溶解热。Ⅳ型及Ⅴ型反映了毛细管冷凝现象和孔容的限制,出于在达到饱和浓度之前吸附就达到平衡,因而显出滞后效应。
       
        描述吸附等温线的数学表达式称为吸附等温式。常用的有Langmuir等温式、B.E.T.等温式和Freundlich等温式。下面介绍 Langmuir等温式。
        2. Langmuir等温式
        Langmuir假设吸附剂表面均一,各处的吸附能相同;吸附是单分子层的,当吸附剂表面为吸附质饱和时,其吸附量达到最大值;在吸附剂表面上的各个吸附点间没有吸附质转移运动;达动态平衡状态时,吸附和脱附速度相等。
        由动力学方法推导出平衡吸附量qe与液相平衡浓度Ce的关系为
                                        (8-2)
        式中  a-最大吸附量有关的常数;
              b-与吸附能有关的常数。
        为计算方便,变换式(8-2)得两种线性表达式:
                                  (8-3)
                                  (8-4)
        根据吸附实验资料,按上式作图可求a,b值。式(8-3)适用于Ce值小于1的情况,而式(8-4)则适用于Ce值较大的情况,因为这样便于作图。
        由式(8-2)可见,当吸附量很少时,即当时,,即qe与Ce成正比,等温线近似于一直线。
        当吸附量很大时,即当时,qe=a,即平衡吸附量接近于定值,等温线趋向水平。
        Langmuir模型适合于描述图8-12中第I类等温线。应当指出,推导该模型的基本假定并不是严格正确的。它只能解释单分子层吸附(化学吸附)的情况。尽管如此,Langmuir等温式仍不失为—个重要的吸附等温式,它的推导第一次对吸附机理作了形象的描述,为以后的吸附模型的建立起了奠基的作用。
        3. 吸附质的性质
        对于一定的吸附剂,由于吸附质性质的差异,吸附效果也不一样。通常有机物在水中的溶解度随着链长的增长而减小,而活性炭的吸附容量却随着有机物在水中溶解度的减少而增加,也即吸附量随有机物分子量的增大而增加。如活性炭对有机酸的吸附量按甲酸<乙酸<丙酸<丁酸的次序而增加。
        活性炭处理废水时,对芳香族化合物的吸附效果较脂肪族化合物好,不饱和链有机物较饱和链有机物好,非极性或极性小的吸附质较极性强吸附质好。应当指出,实际体系的吸附质往往不是单—的,它们之间可以互相促进、干扰或互不相干。
        4. 操作条件
        吸附是放热过程,低温有利于吸附,升温有利于脱附。
        溶液的pH值影响到溶质的存在状态(分子、离子、络合物),也影响到吸附剂表面的电荷特性和化学特性,进而影响到吸附效果,在pH7.5~9.5的范围内,吸附去除率较高。
        在吸附操作中,应保证吸附剂与吸附质有足够的接触时间。流速过大,吸附未达平衡,饱和吸附量小;流速过小,虽能提高一些处理效果,但设备的生产能力减小。一般接触时间0.5~1.0h。
        另外,吸附剂的脱附再生,溶液的组成和浓度及其它因素也影响吸附效果。
        5. 吸附动力学
        吸附过程基本上可分为三个连续的阶段。第一阶段为吸附质扩散通过水膜而到达吸附剂表面(膜扩散);第二阶段为吸附质在孔隙内扩散;第三阶段为溶质在吸附剂内表面上发生吸附。通常吸附阶段反应速度非常快,总的过程速度由第一、二阶段速度所控制。在—般情况下,吸附过程开始时往往由膜扩散控制,而在吸附接近终了时,内扩散起决定代用。
        6. 吸附剂及其再生
        (1) 吸附剂
        广义而言,一切固体物质都有吸附能力,但是只有多孔物质或磨得极细得物质由于具有很大的表面积,才能作为吸附剂。工业吸附利还必须满足下列要求:(1)吸附能力强;(2)吸附选择性好;(3)吸附平衡浓度低;(4)容易再生和再利用;(5)机械强度好;(6)化学性质稳定;(7)来源广;(8)价廉。一般工业吸附剂难于同时满足这八方面的要求,因此,应根据不同的场合选用。
        目前在废水处理中应用的吸附剂有;活性炭、活化煤、白土、硅藻土、活性氧化铝、焦炭、树脂吸附剂、炉渣、木屑、煤灰、腐殖酸等
        1)活性炭
        活性炭是一种非极性吸附剂。外观为暗黑色,有粒状和粉状两种,目前工业上大量采用的是粒状活性炭。活性炭主要成分除碳以外,还含有少量的氧、氢、硫等元素,以及水份、灰份;它具有良好的吸附性能和稳定的化学性质,可以耐强酸,强碱,能经受水浸、高温、高压作用,不易破碎。
        活性炭可用动植物(如木材、锯木屑、木炭、椰子壳、脱脂牛骨)、煤(如泥煤、褐煤、沥青煤、无烟煤)、石油(石油残渣、石油焦)、纸浆废液、废合成树脂及其它有机残物等作原料制作。原料经粉碎及加粘合剂成型后,经加热脱水(120~130℃)、炭化(170~600℃)、活化(700~900℃)而制得。在制造过程中,活化是关键,有药剂活化(化学活化)和气体活化(物理活化)两类方法。药剂活化法是把原料与适当的药剂,如ZnCl2、H2SO4、H3PO4、碱式碳酸盐等混合,再升温炭化和活化。由于ZnCl2等的脱水作用,原料里的氢和氧主要以水蒸气的形式放出,形成了多孔性结构发达的炭。该烧成物中含有相当多的ZnCl2,因此要加HCl以回收ZnCl2,同时除去可溶性盐类。与气体活化法相比,ZnCl2法的固碳率高,成本较低,几乎被用在所有粉状活性炭的制造上。气体活化法是把成型后的炭化物在高温下与CO2、水蒸气、空气、C12及类似气体接触,利用这些活化气体进行碳的氧化反应(水煤气反应),并除去挥发件有机物,使微孔更加发达。活化温度对活性炭吸附性能影响很大,当温度在1150℃以下时,升温可使吸附容量增加,而温度超过1150℃时,升温反而不利。
        活性炭种类很多,可以根据原料、活化方法、形状及用途来分类和选择。
        与其它吸附剂相比,活性炭具有巨大的比表面积和特别发达的微孔。通常活性炭的比表面积高达500~1700m2/g,这是活件炭吸附能力强,吸附容量大的主要原因。当然,比表面积相同的炭,对同一物质的吸附容量有时也不同,这与活性炭的内孔结构和分布以及表面化学性质有关。一般活性炭的微孔容积约为0.15~0.9mL/g,表面积占总表面积的95%以上;过渡孔容积约为0.02~0.1mL/g,除特殊活化方法外,表面积不超过总表面积的5%;大孔容积约为0.2~0.5mL/g,而表面积仅为0.2~0.5m2/g。在液相吸附时,吸附质分子直径较大,如着色成分的分于直径多在3×10-9m以上,这时微孔几乎不起作用,吸附容量主要取决于过渡孔。
        活性炭的吸附以物理吸附为主,但由于表面氧化物存在,也进行一些化学选择性吸附。如果在活性炭中渗入一些具有催化作用的金属离子(如渗银)可以改善处理效果。
        活性炭是目前废水处理中普遍采用的吸附剂。其中粒状炭因工艺简单,操作方便,用量最大。国外使用的粒状炭多为煤质或果壳质无定型炭,国内多用柱状煤质炭。
        国产活性炭型号命名已有国家标准GBl2495-90,规定用大写汉语拼音字母和一组或二组阿拉伯数字表示。如MWYl5表示煤质原料,经物理活化,直径为1.5mm的圆柱状活性炭(原太原新华8#炭)。
        纤维活性炭是一种新型高效吸附材料。它是有机炭纤维经活化处理后形成的。具有发达的微孔结构,巨大的比表面积,以及众多的官能团,因此,吸附性能大大超过目前普通的活性炭。
        2)树脂吸附剂
        树脂吸附剂也叫做吸附树脂,是一种新见有机吸附刮。具有立体网状结构,呈多孔海绵状。加热不熔化,可在150℃下使用,不溶于一般溶剂及酸、碱,比表面积可达800m2/g。
        按照基本结构分类,吸附树脂大体可分为非极性、中极性、极性和强极性四种类型。常见产品有美国Amberlite XAD系列,日本HP系列。国内一些单位元也研制了性能优良的大孔吸附树脂。
        树脂吸附剂的结构容易人为控制,因而它具有适应性大、应用范围广、吸附选择性特殊、稳定性高等优点,并且再生简单,多数为溶剂再生。在应用上它介于活件炭等吸附剂与离子交换树脂之间,而兼具它们的优点,既具有类似于活性炭的吸附能力,又比离子交换剂更易再生。树脂吸附剂最适宜于吸附处理废水中微溶于水,极易溶于甲醉、丙酮等有机溶剂,分子量略大和带极性的有机物。如脱酚、除油、脱色等。
        如制造TNT炸药的废水毒性很大,使用活性炭能去除废水中TNT,但再生困难。采用加热再生时容易引起爆炸。而用树脂吸附剂Amberlite XAD-2处理,效果很好。当原水含TNT34mg/L时,每个循环可处理500倍树脂体积的废水,用丙酮再生,TNT回收率可达80%。
        树脂的吸附能力一般随吸附质亲油性的增强而增大。
        3)腐植酸系吸附剂
        腐植酸类物质可用于处理工业废水,尤其是重金属废水及放射性废水,除去其中的离子。腐植酸的吸附性能,是由其本身的性质和结构决定的。一般认为腐植酸是一组芳香结构的、性质相似的酸性物质的复合混合物。它的大分子约由l0个分子大小的微结构单元组成,每个结构单元由核(主要由五员环或六员环组成)、联结核的桥键(如-O-、-CH2-、-NH-等)、以及核上的活性基团所组成。据测定,腐植酸含的活性基团有羟基、羧基、羰基、胺基、磺酸基、甲氧基等。这些基团决定了腐植酸对阳离子的吸附性能。
        腐植酸对阳离子的吸附,包括离子交换、螯合、表面吸附、凝聚等作用,既有化学吸附,又有物理吸附。当金属离子浓度低时,以螯合作用为主,当金属离子浓度高时,离广交换占上导地位。
        用作吸附剂的腐植酸类物质有两大类,一类是天然的富含腐植酸的风化煤、泥煤、褐煤等,直接作吸附剂用或经简单处理后作吸附剂用。另一类是把富含腐植酸的物质用适当的粘结剂作成腐植酸系树脂,造粒成型,以便用于管式或塔式吸附装置.
        腐植酸类物质吸附重金属离子后,容易脱附再生,常用的再生剂有1~2N的H2SO4、HCl、NaCl、CaCl2等。
        据报导,腐植酸类物质能吸附工业废水中的各种金属离子,如Hg、Zn、Pb、Cu、Cd等,其吸附率可达90%~99%。存在形态不同,吸附效果也不同,对Cr3+的吸附率大于Cr6+。
        (2) 吸附剂再生
        吸附剂在达到饱和吸附后,必须进行脱附再生,才能重复使用。脱附是吸附的逆过程,即在吸附剂结构不变化或者变化极小的情况下,用某种方法将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。通过再生使用,可以降低处理成本;减少废渣排放;同时回收吸附质。
        目前吸附剂的再生方法有加热再生、药剂再生、化学氧化再生、湿式氧化再生、生物再生等。重要方法的分类如表8-2所示。在选样再生方法时,主要考虑三方面的因素:1)吸附质的理化性质;2)吸附机理;3)吸附质的回收价值。
        表8-2 吸附剂再生方法分类
       
       
三、膜分离
不要轻言放弃,否则对不起自己!
17楼2009-01-09 08:37:21
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

三、膜分离
        (一)概述
        膜分离法是利用特殊的薄膜对液体中的某些成分进行选择性透过的方法的统称。溶剂透过膜的过程称为渗透,溶质透过膜的过程称为渗析。常用的膜分离方法有电渗析、反渗透、超滤。其次是自然渗析和液膜技术。近年来,膜分离技术发展很快,在水和废水处理、化工、医疗、轻工、生化等领域得到大量应用。
        膜分离的作用机理往往用膜孔径的大小为模型来解释,实质上,它是由分离物质间的作用引起的,同膜传质过程的物理化学条件以及膜与分离物质间的作用有关。
        根据膜的种类、功能和过程推动力的不同,各种膜分离法的特征和它们之间的区别如表8-3所示。
       
        表8-3  几种主要膜分离法的特点
       
       
        膜分离技术有以下共同持点。
        ①膜分离过程不发生相变,因此能量转化的效率高。例如在现在的各种海水淡化方法中,反渗透法能耗最低。
        ②膜分离过程在常温下进行,因而特别适于对热敏性物料,如对果汁、酶、药物等的分离、分级和浓缩。
        ③装置简单,操作容易,易控制、维修,且分离效率高。作为一种新型的水处理方法,与常规水处理方法相比.具有占地面积小、适用范围广、处理效率高等特点。
        (二)电渗析
        1.电渗析原理与过程
        电渗析是在直流电场的作用下,利用阴、阳离子交换膜对溶液中阴、阳离子的选择透过性(即阳膜只允许阳离子通过,阴膜只允许阴离子通过),而使溶液中的溶质与水分离的一种物理化学过程。
        电渗析系统由—系列阴、阳膜交替排列于两电极之间组成许多由膜隔开的小水室,如图8-13所示。当原水进入这些小室时,在直流电场的作用下,溶液中的离子作定向迁移。阳离子向阴极迁移,阴离子向阳极迁移。但由于离子交换膜具有选择透过性,结果使一些小室离子浓度降低而成为淡水室,与淡水室相邻的小室则因富集了大量离子而成为浓水室。从淡水室和浓水室分别得到淡水和浓水。原水中的离子得到了分离和浓缩,水便得到了净化。
        在电渗析过程中,除了上述离子电迁移和电极反应两主要过程以外,同时还发生一系列次要过程,如下所述。
        (1)反离子的迁移  因为离子交换膜的选择性不可能达到100%,所以也有少量与离于交换膜解离离子电荷相反的离子透过膜,即阴离子透过阳膜,阳离子透过阴膜。当膜的选择性固定后,随着浓室盐浓度增加,这种反离子迁移影响加大,
        (2)电解质浓差扩散  由于膜两侧溶液浓度不同,在浓度差作用下,电解质由浓室向淡室扩散,扩散速度随浓度差的增高而增长。
        (3)水的渗透  由于浓、淡水室存在浓度差,又是由半透膜隔开,在水的渗透压作用下,水由淡水室向浓水室渗透。浓度差愈大,水的渗透量也愈大。
        (4)水的电渗透  溶液中离子实际上都是以水合离子形式存在,在其电迁移过程中必然携带一定数量的水分子迁移,这就是水的电渗透。随着溶液浓度的降低,水的电渗透量急聚增加。
        (5)水的压渗  当浓室和淡室存在着压力差时,溶液由压力高的一侧向压力低的一侧渗漏。
        (6)水的电离  在不利的操作条件下,由于电流密度与液体流速不匹配,电解质离子未能及时地补充到膜的表面,而造成膜的淡水侧发生水的电离,生成H+和OH-离子,以补充淡水侧离子之不足。
        综上所述,电渗析器在运行时,同时发生着多种复杂过程。主要过程是电渗析处理所希望的,而次要过程却对处理不利。例如,反离子迁移和电解质浓差扩散将降低除盐效果;水的渗透、电渗和压渗会降低淡水产量和浓缩效果;水的电离会使耗电量增加,导致浓水室极化结垢等,因此,在电渗析器的设计和操作中,必须设法消除或改善这些次要过程的不利影响。
       
        2.离子交换膜
        (1)离子交换膜的分类
        离子交换膜的品种繁多,通常按结构、活性基团和成膜材料来分类。
        1)按膜体结构分类
        a. 异相膜  它是离子交换剂的细粉末和粘合剂混合,经加工制成的薄膜。其中含有离子交换活性基团部分和成膜状结构的粘合剂部分,形成的膜其化学结构是不连续的,故称异相膜或非均相膜。由于离子交换剂和粘合剂是性质不同的物质,因而膨胀收缩不一样。在两者的接触面上容易脱开,产生间隙。从而导致离子透过的选择性下降。这类膜的优点在于制造容易,机械强度也比较高,缺点是选样性较差、膜电阻也大,在使用中容易受污染。
        b. 半均相膜  这类膜的成膜材料与活性基团混合得十分均匀,但它们之间没有化学结合。例如,用含浸法将具有离子交换基团的聚电解质引入成膜材料之中而构成的离子交换膜,以及将可溶性线形聚电解质与成膜材料溶解在同—溶剂中,然后用流延法制成的膜都属于半均相膜。这类膜的优点是制造方便,电化学性能较异相膜好,但聚电解质和成膜材料并没有化学结合,长期使用,仍有发生脱离的可能,影响均匀性和电化学性能。
        c. 均相膜  它是由具有离子交换基因的高分子材料直接制成的膜,或者在高分子膜基上直接接上活性基团而制成的膜。这类膜中活性基团与成膜材料发生化学结合,组成完全均匀,具有优良的电化学性能和物理性能,是近年来离子交换膜的主要发展方向。
        2)按活性基团分类
        a.阳离子交换膜(简称阳膜)  阳膜与阳离子交换树脂一样,带有阳离子交换基团,它能选择件透过阳离子而不让阴离子透过。按交换基团离解度的强弱,分为强酸性和弱酸性阳膜。酸性活性基团主要有:磺酸基(-SO3H)、磷酸基(-PO3H2)、磷酸基(-OPO3H)、羧酸基(-COOH)、酚基(-C6H4OH)等。
        b.阴离子交换膜(简称阴膜)  膜体中含有带正电荷的碱性活性基团,它能选择性透过阴离子而不让阳离子透过。按其交换基团离解度的强弱,分为强碱性和弱碱性阴膜。碱性活性基团主要有:季按基[-N(CH3)2OH]、伯胺基(-NH2)、仲胺基(-NHR)、叔胺基(-NR2)等。
        c.特种膜  这类膜包括两极膜、两性膜、表面涂层膜等具有特种性能的离子交换膜。两极膜系由阳膜和阴膜粘贴在一起复合而成;在两性膜中阳、阴离子活性基团同时存在且均匀分布,这种膜对某些离子具有高选择性;在阳膜或阴膜表面上再涂一层阴或阳离子交换树脂就得到表面涂层膜,如在苯乙烯磺酸型阳膜的表面再薄薄地涂上一层酚醛磺酸树脂膜,得到的膜对一价阳离子有较好的选择性,而且有阻止二价阳离子透过的性能。
        3)按材料性质分类
        a. 有机离子交换膜  各种高分子材料合成的膜,如聚乙烯、聚丙烯、聚氯乙烯、聚醚以及含氟高聚物、离子交换膜等均属此类。日前使用最多的磺酸型阳膜和季胺型阴膜都是有机离子交换膜。
        b.无机离子交换膜  这类膜由无机材料制成,具有热稳定性、抗氧化、耐辐照及成本低等持点,如磷酸锆和矾酸铝等。它是在特殊场合使用的新型膜。
        此外,也有按膜的用途将离子交换膜分为浓缩膜、脱盐膜和特殊选择透过性膜等几类。
        (2) 离子交换膜的性能
        离子交换膜是电渗析器的关键部件,良好的电渗析膜应具有高的离子选择透过性和交换容量、低的电阻和渗水性以及足够的化学和机械稳定性。反映离子交换膜性能的指标主要有以下几项。
        1)交换容量  膜的交换容量是表示在—定量的膜样品中所含活性基团数,通常以单位面积、单位体积或单位干重膜所含的可交换离子的毫克当量数表示。膜的选择透过性和电阻都受交换容量的影响。一般膜的交换容量约1~3毫克当量/克(干膜)。
        2)含水量  它表示湿膜中所含水的百分数(可以单位重量干膜或湿膜计)。含水量受膜内活性基团数量、交联度、平衡溶液的浓度和溶液内离子种类的影响。离子交换膜的含水量一般为30%~50%。
        3)破裂强度  破裂强度是衡量膜的机械强度的重要指标之一。表示膜在实际应用时所能承受的垂直方向的最大压力。在电渗析操作中,膜两侧所受的流体压力不可能相等,故膜必须有足够的机械强度,以免因膜的破裂而使浓室和淡室连通、造成无法运行。国产膜的破裂强度为0.3~1.0 MPa。
        4)厚度  膜厚度与膜电阻和机械强度有关。在不影响膜的机械强度的情况下,膜越薄越好,以减少电阻。一般异相膜的厚度约1mm,均相膜的厚度约0.2~0.6mm,最薄的为0.015mm。
        5)导电性  完全干燥的膜几乎是不导电的,含水的膜才能导电。这说明膜是依靠(或主要依靠)含在其中的电解质溶液而导电。膜的导电性可用电阻率、电导率或面电阻来表示,面电阻表示单位膜面积的电阻(Ω·cm-2),整个膜的电阻为膜的面电阻除以膜的总面积。
        膜的导电性与平衡溶液的浓度、溶液中的离子、膜中的离子、温度及膜本身的特性有关,所以其数值的测定要在规定的条件下进行。
        6)选择透过性与膜电位  膜对离子选择透过性的优劣,往往用离子在膜中的迁移数和膜的选择透过度来表示。
        在直流电场中,电解质溶液中阳、阴离子定向迁移共同传递电量,而在膜中只允许一种离子透过来传递电量。通常把某种离子传递的电量与总电量之比称为该离子的迁移数(ti)。显然,离子在膜中的迁移数()大于在溶液中的迁移数(ti)。如在NaCl稀溶液中,≈0.4,≈0.6,而在阳膜中,→1,→0。
        膜的选择透过度Pi定义为i离子在膜中迁移数的增加值与该离子在理想膜中的迁移数的增加值之比,即
                               (8-5)
        式中是i离子在理想膜中的迁移数,=1。ti取膜两侧溶液平均浓度下的迁移数,可查物理化学手册得到。可通过测定膜电位,由下式估算得到
                                   (8-6)
        式中Em即为实际测定的膜电位,而是在测定Em的条件下理想膜的膜电位。如在25℃,用0.1N  KCl溶液测定膜电位时,约为1.61mV。
        为什么会产生膜电位呢?因为在电渗析运行过程中,在膜的两侧分别富集了电位不同的两种电荷,由此产生一个电位差即膜电位。以阳膜为例(如图9-2所示)。由于阳离子透过膜使得在膜的浓侧富集了高电位的阳离子,而在淡侧富集了低电位的阴离子,此电位差即膜电位的极性与外加电位的极性相反。对阴膜亦然。
        (3)离子交换膜的选择性透过机理
        离子交换膜主要是一种聚电解质,在高分子骨架上带有若干可交换活性基团,这些活性基团在水中可以电离成电荷符号不同的两部分-固定基团和解离离子。例如:
       
       
        离子交换膜的选择性透过机理可用双电层理论和Donnan膜平衡理论解释。
        1)双电层理论  在固定基团和进入溶液中的解离离子之间,由于存在着静电引力,固定基团力图将解离离子吸引到近旁,但热运动又使解离离子均匀分布到整个溶液中去,这两种互相矛盾着的力的作用结果,在膜—溶液界面上形成带相反电荷的双电层。此时这些带电的固定基团会对膜外溶液中带相反电荷的离子因异性相吸使之向膜运动,并在外加电场力的作用下继续运动直至穿过膜,而溶液中与固定基团电荷相同的离子则因同性相斥而不能靠近和穿过膜,从而实现了离子的选择性透过。离子交换膜中活性基团数愈多,双电层愈厚。固定基团对反离子的吸引力和对同离子的排斥力就愈大,膜的选择透过性也就愈高。
        2)Donnan膜平衡理论  Donnan膜平衡理论是解释离子交换树脂与电解质溶液间的平衡问题的。对离子交换膜来说,它只是离子交换树脂的一种特殊应用。当离子交换膜浸入电解质溶液时,电解质溶液中的离子和膜内的离子会发生交换作用,最终达到动态平衡。假定膜相和溶液相分别为I和II相.假如Na+型强酸离子交换膜浸入NaCl溶液中,离子在膜和溶液中发生交换,当达平衡时:
       
       
        (三) 反渗透
        反渗透法是20世纪60年代发展起来的一项新的薄膜分离技术。它是在一定的压力下,依靠反渗透膜使溶液中的溶剂和溶质进行分离。
        渗透是一种物理现象,用一张半透膜将淡水和某种浓溶液隔开,如图8-14所示,该膜只让水分子通过,而不让溶质通过。由于淡水中水分子的化学位比溶液中水分子的化学位高,所以淡水中的水分子自发地透过膜进入溶液中,这种现象叫做渗透。在渗透过程中,淡水一侧液面不断下降,溶液一侧液面则不断上升。当两液面不再变化时,渗透便达到了平衡状态。此时两液面高差称为该种溶液的渗透压。如果在溶液一侧施加大于渗透压的压力P,则溶液中的水就会透过半透膜,流向淡水一侧,使溶液浓度增加,这种作用称为反渗透。
        因此,反渗透的原理就是在有盐分的水中,施加一比自然渗透压力更大的压力,使渗透向相反的方向进行,把废水中的水分子压到膜的另一边,变成洁净的水,从而达到去除废水中盐分的目的。废水处理中常采用的压力为2.5~5.0 MPa。
        目前,反渗透膜主要有醋酸纤维素膜和芳香族聚酰胺膜两大类。完成反渗透工艺的装置主要有板式、管式、螺旋式和中空纤维式四种。
        反渗透法处理废水已得到比较好地应用。主要用于处理酸性尾矿废水、电镀废水、纸浆及造纸废水、丝绸厂整染废水及有机化工废水。
       
        图8-14 反渗透原理
        (四)超滤-
        超滤是利用孔径在0.2~20 nm的半透膜,让流体以一定压力和流速通过膜的表面将流体中的高分子和低分子分开。超滤法与反渗透法相似,也是以压力差为推动力的液相膜分离过程。但是两者的作用实质并不完全相同。超滤的机理目前尚不完善,一般认为,超滤是一种筛孔分离过程。超滤膜具有选择性表面层的主要因素是它具有一定大小的孔隙,比孔隙小的分子和粒子可以在压力差的作用下,从高压侧透过膜到低压侧,而大粒子则被膜所阻拦,从而达到选择性分离的目的。
        超滤膜是超滤工艺的关键,要求它有较好的分离性能,高透水率,化学稳定性好,强度高。大多数超滤膜都是聚合物或共聚合物的合成膜,如醋酸纤维素和芳香聚酰胺等,在膜材科的选择和制备上和反渗透膜有许多类似的地方。所以有人认为超滤膜就是具有较大平均孔径的反渗透膜。
        超滤法所截留的污染物粒子比反渗透法所截留的粒子要大得多,前者约为2~10000μm,而后者仅为0.4~600μm。超滤法也要加压,以使废水能克服滤膜的阻力而透过滤膜,但这个压力比反渗透法要小,—般为101.3kPa~709.3kPa。
        超滤设备同反渗透相似,主要有板框式、管式、螺旋卷式和中空纤维式。
        用超滤法进行废水处理,既可做到水的循环使用,又可回收其中有价值的产品,它已在食品、印染、电镀、造纸、金属加工等部门的废水处理中得到研究和应用。例如在人造纤维生产中油洗工段产生的含油废水可使用超滤法将其中的油剂大部分回收利用,图8-15为它的过程示意图。据报道,超滤液的油剂浓度及COD的去除率均可达到90%以上,浓缩油回用效果也很好。
不要轻言放弃,否则对不起自己!
18楼2009-01-09 08:38:02
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

废水的生化处理方法
        废水生物处理是19世纪末出现的治理污水的技术,发展至今已成为世界各国处理城市生活污水和工业废水的主要手段。目前,国内己有近万座污水生物处理厂(站)投入运行。
        生物化学处理法简称生化法,是利用自然环境中的微生物,并通过微生物体内的生物化学作用来分解废水中的有机物和某些无机毒物(如氰化物、硫化物),使之转化为稳定、无害物质的一种水处理方法。
        1916年在英国出现了第一座人工处理的曝气池,利用人工培养的微生物来处理城市生活污水,开始了生化处理的新时代。由于生化法处理废水效率高、成本低、投资省、操作简单,因此在城市污水和工业废水的处理中都得到广泛的应用。生化法的缺点是有时会产生污泥膨胀和上浮,影响处理效果;该法对要处理水的水质也有一定要求,如废水成份、pH值、水温等,因而限制了它的使用范围,另外,生化法占地面积也较大。
        属于生化处理法的有活性污泥法、生物过滤法、生物膜法、生物塘法和厌氧生物法等。
       
        一、微生物及其生化特性
        迄今为止,已知的环境污染物达数十万种之多,其中大量的是有机物。所有的有机污染物,可根据微生物对它们的降解性,分成可生物降解、难生物降解和不可生物降解三大类。
        废水的生物处理就是利用微生物的新陈代谢作用处理废水的一种方法。微生物与其它生物一样,为了进行自身的生理活动,必须从周围环境中摄取营养物质并加以利用。这些营养物质在微生物体内,通过一系列的生物化学反应,使微生物获得需要的能量,同时微生物本身也得到繁殖、数量得到增加。在废水中存在着各种有机物和无机物。这些物质大部分都可以被微生物作为营养物质而加以利用。废水的生物处理实质就是将废水中含有的污染物质作为微生物生长的营养物质被微生物代谢、利用、转化,将原有的高分子有机物转化为简单有机物或无机物,使得废水得到净化。
        作为一个整体,微生物分解有机物的能力是惊人的。可以说,凡自然界存在的有机物,几乎都能被微生物所分解。有些种类,如葱头假单胞菌甚至能降解90种以上的有机物,它能利用其中任何一种作为唯一的碳源和能源进行代谢。有毒的氰(腈)化物、酚类化合物等,也能被不少微生物作为营养物质利用、分解。
        半个多世纪以来,人工合成的有机物大量问世,如杀虫剂、除草剂、洗涤剂、增塑剂等,它们都是地球化学物质家族中的新成员。尤其是不少合成有机物的研制开发时的目的之一,就是要求它们具有化学稳定性。因此,微生物一接触这些陌生的物质,开始时难以降解也是不足为怪的。但由于微生物具有极其多样的代谢类型和很强的变异性,近年来的研究,已发现许多微生物能降解人工合成的有机物,甚至原以为不可生物降解的合成有机物,也找到了能降解它们的微生物。因此,通过研究,有可能使不可降解的或难降解的污染物转变为能降解的,甚至能使它们迅速、高效地去除。
        化学结构与生物降解的相关性归纳起来主要有以下几点:
        (1)烃类化合物
        一般是链烃比环烃易分解,直链烃比支链烃易分解,不饱和烃比饱和烃易分解。
        (2)主要分子链
        主要分子链上的C被其他元素取代时,对生物氧化的阻抗就会增强,也就是说,主链上的其他原子常比碳原子的生物利用度低,其中氧的影响最显著(如醚类化合物较难生物降解),其次是s和N。
        (3)碳氢键
        每个C原子上至少保持一个氢碳键的有机化合物,对生物氧化的阻抗较小,而当C原子上的H都被烷基或芳基所取代时,就会形成生物氧化的阻抗物质。
        (4)官能团的性质及数量
        官能团的性质及数量对有机物的可生化性影响很大。例如,苯环上的氢被羟基或氨基取代,形成苯酚或苯胺时,它们的生物降解性将比原来的苯提高。卤代作用则使生物降解性降低,尤其是间位取代的苯环,其抗生物降解更明显。
        (5)分子量大小对生物降解性的影响很大
        高分子化合物,由于微生物及其酶难以扩散到化合物内部,袭击其中最敏感的反应键,因此使生物可降解性降低。
        由于废水中污染物的种类繁多,相互间的影响错综复杂,所以一般应通过实验来评价废水的可生化性,判断采用生化处理的可能性和合理性。
        二、有机污染物生物降解性的评定方法
        1.BOD5/COD值法
        BOD5和COD是废水生物处理过程中常用的两个水质指标,用BOD5/COD值评价废水的可生化性是广泛采用的一种最为简易的方法。在一股情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。综合国内外的研究结果,可参照表8-4中所列数据评价废水的可生化性。
       
        表8-4 废水可生化性评价参考数据
        BOD5/COD                >0.45                0.3~0.45                0.2~0.3                <0.2       
        可生化                好                较好                较难                不宜       
       
        在使用此法时,应注意以下几个问题。
        ①某些废水中含有的悬浮性有机固体容易在COD的测定中被重铬酸钾氧化,并以COD的形式表现出来。但在BOD反应瓶中受物理形态限制,BOD数值较低,致使BOD5/COD值减小。而实际上悬浮有机固体可通过生物絮凝作用去除,继之可经胞外酶水解后进入细胞内被氧化,其BOD5/COD值虽小,可生物处理性却不差。
        ②COD测定值中包含了废水中某些无机还原性物质(如硫化物、亚硫酸盐、亚硝酸盐、亚铁离子等)所消耗的氧量,BOD5测定值中也包括硫化物、亚硫酸盐、亚铁离子所消耗的氧量。
        但由于COD与BOD5测定方法不同,这些无机还原性物质在测定时的终态浓度及状态都不尽相同,亦即在两种测定方法中所消耗的氧量不同,从而直接影响BOD5和COD的测定值及其比值。
        重铬酸钾在酸性条件下的氧化能力很强,在大多数情况下,COD值可近似代表废水中全部有机物的含量。但有些化合物如吡啶不被重铬酸钾氧化,不能以COD的形式表现出需氧量,但却可能在微生物作用下被氧化,以BOD5的形式表现出需氧量,因此对BOD5/COD值产生很大影响。
        综上所述,废水BOD5/COD值不可能直接等于可生物降解的有机物占全部有机物的百分数,所以,用BOD5/COD值来评价废水的生物处理可行性尽管方便,但比较粗糙,欲做出准确的结论,还应辅以生物处理的模型实验。
        2.BOD5/TOD值法
        对于同一废水或同种化合物,COD值一般总是小于或等于TOD值,不同化合物的COD/TOD值变化很大,如吡啶为2%,甲苯为45%,甲醇为100%,因此,以TOD代表废水中的总有机物含量要比COD准确,即用BOD5/TOD值来评价废水的可生化性能得到更好的相关性。
        通常,废水的TOD由两部分组成,其一是可生物降解的TOD(以TODB表示),其二是不可生物降解的TOD(以TODNB表示),即:
        TOD=TODB+TODNB    (12-19)
        在微生物的代谢作用下,TODB中的一部分氧化分解为CO2和H2O,一部分合成为新的细胞物质。合成的细胞物质将在内源呼吸过程中被分解,并有一些细胞残骸最终要剩下来。采用BOD5/TOD值评价废水可生化性时,有些研究者推荐采用表8-5所列标准。
       
        表8-5 废水可生化性评价参考数据
        BOD5/TOD                >0.4                0.2~0.4                <0.2       
        可生化性                易生化                可生化                难生化       
       
        三、生化处理方法概述
        生物处理法在城市污水的处理中使用得比较广泛。城市污水的处理分为三个级别,分别称为污水一级处理、污水二级处理和污水三级处理。污水一级处理就是使用物理处理方法,如格栅、沉淀池等去除水中不溶解的污染物。二级处理应用生物处理法,通过微生物的代谢作用进行物质的转化,将废水中的复杂有机构氧化降解为简单的物质。三级处理是用生物法、离子交换法等去除水中的氮和磷,并用臭氧氧化、活性炭吸附等去除难降解有机物,用反渗透法去除盐类物质,用氯化法对水进行消毒。我国目前正在努力普及二级处理,而二级处理中生物处理是最常采用的方法。
        不同的细菌对氧的反应变化很大,一些细菌只能在有氧存在的环境中生长,称需氧细菌(或称好氧细菌),利用此类微生物的作用来处理废水称为好氧生物处理法。另一些细菌只能在无氧的环境中生长,叫厌氧细菌,相应的处理方法叫厌氧生物处理。介于两者之间的还有兼性微生物(在有氧或无氧的环境中均可生长),但它们在废水处理中不起主要作用。
        按微生物的代谢形式,生化法可分为好氧法和厌氧法两大类;按微生物的生长方式可分为悬浮生物法和生物膜法,现归纳如下:
不要轻言放弃,否则对不起自己!
19楼2009-01-09 08:40:24
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

xf1314520y

金虫 (正式写手)

(一)废水的好氧生物处理
        在充分供氧的条件下,利用好氧微生物的生命活动过程,将有机污染物氧化分解成较稳定的无机物的处理方法,在工程上称为废水的好氧生物处理。
        微生物对有机污染物进行好氧分解的过程如下:溶解态的有机物可以直接透过细菌的细胞壁进入细胞内。固体或胶体的有机物先被细菌吸附,靠细菌所分泌的外酶作用,分解成溶解性的物质,然后,再渗入细菌细胞内,通过细菌自身的生命活动,在内酶的作用下,进行氧化、还原和合成过程。一部分被吸收的有机物氧化分解成简单的无机物,如有机物中的碳被氧化成二氧化碳,氢与氧化合成水,氮被氧化成氨、亚硝酸盐和硝酸盐,磷被氧化成磷酸盐,硫被氧化成硫酸盐等。与此同时释放出能量,作为细菌自身生命活动的能源,并将另一部分有机物作为其生长繁殖所需要的构造物质,合成新的原生质。
        好氧生物处理时,有机物的转化过程如图8-17所示。
       
        图8-17 有机物的好氧分解图示
        在废水好氧处理过程中,必须不间断地供给溶解氧。因为氧是有机物的最后氢受体,正是由于这种氢的转移,才使能量释放出来,成为细菌生命活动和合成新细胞物质的能源。
        有机物的好氧合成过程,也可以用下列生化反应式表示:
        (1)有机物的氧化分解(有氧呼吸):
                  (8-7)
        (2)原生质的同化合成(以氨为氮源):
                  (8-8)
        (3)原生质的氧化分解(内源呼吸):
                                  (8-9)
        由此可以看出,当废水中营养物质充足,即微生物既能获得足够的能量,又能大量地合成新的原生质肘,微生物就不断增长。当废水中营养物质缺乏时,微生物只得依靠细胞内贮藏的物质,甚至把原生质也作为营养物质利用,以获得生命活动所需的最低限度得能源,这种情况下,微生物无论重量还是数量都是不断减少的。可见,要保证废水处理得效果,  首先必须有足够数量的微生物,同肘,还必须有足够数量的营养物质。
        在好氧生物处理过程中,有机物用于氧化与合成的比例,随废水中有机物性质而异。对于生活污水或与之相类似的工业废水,所产生的新细胞物质,约占全部有机物干重的50~60%。
       
        (二)废水的厌氧生物处理
        在断绝供氧的条件下,利用厌氧微生物的生命活动过程,使废水中的有机物转化成较简单的有机物和无机物的处理过程,在工程上称为废水的厌氧生物处理。
        有机物的厌氧分解过程分为两个阶段。在第一阶段中,产酸细菌把存在于废水中的复杂有机物转化成较简单的有机物(如有机酸、醇类等)和CO2、NH3、H2S等无机物。在第二阶段中,甲烷细菌接着将简单的有机物分解成甲烷和二氧化碳等。厌氧分解过程可用图8-18的简单图式来说明。
       
        图8-18 有机物厌氧分解图示
       
        厌氧分解过程中,由于缺乏氧作为氢受体,所以,对有机物的分解不彻底,贮于有机物中的化学能未全部释放出来。一般说来,微生物的厌氧生长条件比较严格。
       
        (三)好氧生物处理与厌氧生物处理的区别
        1.起作用的微生物群不同  好氧生物处理是由一大群好氧菌和兼性厌氧菌起作用的;而厌氧生物处理是两大类群的微生物起作用,先是厌氧菌和兼性厌氧菌,后是另一类厌氧菌。
        2.产物不同  好氧生物处理中,有机物被转化成CO2、H2O、NH3、-、等,且基本无害。厌氧生物处理中,有机物先被转化成为数众多的中间有机物(如有机酸、醇、醛等),以及CO2、H2O等;其中有机酸、醇、醛等有机物又被另一群被称为甲烷菌的厌氧菌继续分解。由于能量的限制,其终产物受到较少的氧化作用,如有机碳常形成CH4,而不是CO2;有机氮形成氨、胺化物或氮气,而不是亚硝酸盐或硝酸盐;硫形成H2S,而不是SO2或等。产物复杂,有异臭,一些产物可作燃料。
        3.反应速率不同  好氧生物处理由于有氧作为氢受体,有机物转化速率快,需要时间短。可用较小的设备处理较多的废水;厌氧生物处理反应速率慢,需要时间长,在有限的设备内,仅能处理较少量废水或污泥。
        4.对环境要求条件不同   好氧生物处理要求充分供氧,对环境条件要求不太严格;厌氧生物处理要求绝对厌氧的环境,对环境条件(如PH值、温度)要求甚严。
        好氧生物处理与厌氧生物处理都能完成有机污染物的稳定化,但在实际中究竟采用哪种方法,要视具体情况而定。采用厌氧法处理废水,除需要时间长外,处理水发黑,有臭味,且BOD浓度仍然很高;如果废水的BOD5浓度较低,所需的处理设备将很庞大。所以,一般废水中有机物浓度若超过1%(约l0000毫克/升),才用厌氧生物处理。目前的厌氧生物处理多用于处理沉淀池的有机污泥和高浓度有机废水(象屠宰、酿造工业、食品工业等生产废水)。而好氧生物处理则多用于处理有机污染物浓度较低或适中的废水。
        四、活性污泥法
        活性污泥法是当前应用最为广泛的一种生物处理技术,活性污泥就是生物絮凝体,上面栖息、生活着大量的好氧微生物,这种微生物在氧分充足的环境下,以溶解型有机物为食料获得能量、不断生长,从而使废水得到净化。该方法主要用来处理低浓度的有机废水。本方法的主要设备为反应装置和提供氧气的曝气设备。
        1.活性污泥法基本原理
        (1)  活性污泥法的基本流程
        传统的活性污泥法由初次沉淀池、曝气池、二次沉淀池、供氧装置以及回流设备等组成,基本流程如图8-19所示。由初沉池流出的废水与从二沉池底部流出的回流污泥混合后进入曝气池,并在曝气池充分曝气产生两个效果:①活性污泥处于悬浮状态,使废水和活性污泥充分接触;②保持曝气池好氧条件,保证好氧微生物的正常生长和繁殖。废水中的可溶性有机物在曝气池内被活性污泥吸附、吸收和氧化分解,使废水得到净化。二次沉淀的作用有两个:①将活性污泥与已被净化的水分离;②浓缩活性污泥,使其以较高的浓度回流到曝气池。二沉池的污泥也可以部分回流至初沉池,以提高初沉效果。
       
        图8-19  活性污泥法基本流程
       
        活性污泥系统有效运行的基本条件是:①废水中含有足够的可溶性易降解有机物,作为微生物生理活动必需的营养物质;②混合液含有足够的溶解氧;③活性污泥在池内呈悬浮状态,能够充分与废水相接触;④活性污泥连续回流、及时地排除剩余污泥,使混合液保持一定浓度的活性污泥;⑤没有对微生物有毒害作用的物质进入。
        (2) 活性污泥的性能及其评价指标
        1)活性污泥的组成
        活性污泥由四部分物质组成:①具有活性的微生物群体(Ma);②微生物自身氧化的残留物质(Me);③原污水挟入的不能为微生物降解的惰性有机物质(Mi);④原污水挟入的无机物质(Mii)。
        2)活性污泥评价指标
        性能良好的活性污泥应松散(有利吸附和氧化有机物)并具有良好的凝聚沉淀性能(利于处理后的清水分离),通常用下列几个指标来评价活性污泥的优劣,以便控制系统的正常运行。
        ①污泥浓度(MLSS)  又称混合液悬浮固体浓度,是指曝气区内1升混合液所含悬浮物量,以mg/L表示。它表示混合液中活性污泥的浓度,在单位体积混合液内所含有的活性污泥固体物的总重量,即
        MLSS=Ma+Me+Mi+Mii                 (8-10)
        MLSS反映出活性污泥所含微生物多少和处理有机物能力的强弱。包括具有活性的微生物群体、自身氧化残留物、微生物不能降解的有机物和无机物等四部分。适宜的浓度应根据具体情况确定,一般废水处理可取2×103~4×103 mg/L。
        ②混合液挥发性悬浮固体浓度(MLVSS)  表示活性污泥中有机性固体物质的浓度,即
        MLVSS=Ma+Me+Mi                        (8-11)
        在一定条件下,MLVSS/MLSS值较稳定,城市污水的活性污泥介于0.75~0.85之间。
        活性污泥的性能主要表现为沉淀性和絮凝性,活性污泥的沉降经历絮凝沉淀、成层沉淀,并进入压缩过程。性能良好具有一定浓度的活性污泥在30min内即可完成絮凝沉淀和成层沉淀过程,为此建立了以活性污泥静置30min为基础的指标表示其沉降-浓缩性能。
        污泥沉降比(SV%)   1L混合液静置沉降30min后,沉淀污泥占混合液的体积百分比。它反映出污泥的凝聚-沉淀性能和污泥量的多少,以便控制污泥排除时间和排除数,一般取15%~40%。
        ④污泥体积指数(污泥指数)(SVI)  污泥指数也称污泥容积指数,是指混合液经30min沉降后,1g干污泥在湿的时候所占体积,以mL/g计。
          (mL/g)   (8-12)
        它反映出污泥的松散程度和凝聚、沉降性能。该值越低,则说明污泥颗粒小而紧密易沉降,但活性和吸附力低,含无机物多;过高则太松散,难以沉淀,将要或已经发生污泥膨胀现象。对于城市污水的活性污泥SVI值为50~150之间。
        污泥龄  活性污泥在曝气池内的平均停留时间,即曝气池内活性污泥的总量与每日排放污泥量之比,污泥龄是活性污泥系统设计与运行管理的重要参数,它能够直接影响曝气池内活性污泥的性能和功能。
        通过调节废弃污泥量就可以改变污泥龄的值,把它控制在适宜于细菌增殖的时间范围内,一般为3~14天。
        2.活性污泥法的运行方式
        活性污泥法已应用了80余年,为了适应不同处理要求,降低费用,经过不断发展,已形成了多种运行方式,下面做简单介绍。
        (1)普通活性污泥法
        普通活性污泥法也称传统活性污泥法,是在废水的自净作用原理下发展而来的。废水在经过沉砂、初沉等工序进行一级处理,去除了大部分悬浮物和部分BOD后即进人一个人工建造的池子,池子犹如河道的一段,池内有无数能氧化分解废水中有机污染物的微生物。同天然河道相比,这一人工的净化系统效率极高,大气的天然复氧根本不能满足这些微生物氧化分解有机物的耗氧需要,因此在池中需设置鼓风曝气或机械翼轮曝气的人工供氧系统,池子也因此而被称为曝气池。
        废水在曝气池停留一段时间后,废水中的有机物绝大多数被曝气池申的微生物吸附、氧化分解成无机物,随后即进入另一个池子-沉淀池。在沉淀池中,成絮状的微生物絮体-活性污泥下沉,处理后的出水-上清液即可溢流而被排放。
        为了使曝气池保持高的反应速率,必须使曝气池内维持足够高的活性污泥微生物浓度。为此,沉淀后的活性污泥又回流至曝气池前端,使之与进入曝气池的废水接触,以重复吸附、氧化分解废水中的有机物。
        在连续生产(连续进水)条件下,活性污泥中微生物不断利用废水中的有机物进行新陈代谢,由于合成作用的结果,活性污泥数量不断增长,因此曝气池中活性污泥的量愈积愈多,当超过一定的浓度时,应适当排放一部分,这部分被排去的活性污泥常称作剩余污泥。普通活性污泥法工艺流程见图8-20。
       
        图8-20  普通活性污泥法的工艺流程
        曝气池中污泥浓度一般控制在2~3g/L,废水浓度高时采用较高数值。废水在曝气池中的停留时间常采用4~8h,视废水中有机物浓度而定。回流污泥量约为进水流量的25%~50%,视活性污泥含水率而定。
        曝气池中水流是纵向混合的推流式。在曝气池前端,活性污泥同刚进入的废水相接触,有机物浓度相对较高,即供给活性污泥微生物的食料较多,所以微生物生长一般处于生长曲线的对数生长期后期或稳定期。由于普通活性污泥法曝气时间比较长,当活性污泥继续向前推进到曝气池末端时,废水中有机物已几乎被耗尽,污泥微生物进入内源代谢期,它的活动能力也相应减弱,因此,在沉淀池中容易沉淀,出水中残剩的有机物数量较少。处于饥饿状态的污泥回流入曝气池后又能够强烈吸附和氧化有机物,所以普通活性污泥法的BOD和悬浮物去除率都很高,可达到90~95%。
        普通活性污泥法也有它的不足之处,主要是:对水质变化的适应能力不强;所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况(见图8-21)。因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大,占地多,能耗费用高。
       
        图8-21 曝气池中供水量和需氧量之间的关系
        (2)阶段曝气法
        阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。图8-21图示了普通活性污泥法与阶段曝气法的曝气池中供氧量和需氧量之间的关系。
        阶段曝气法的工艺流程如图8-22所示。从图中可见,阶段曝气法中废水沿池长多点进入,这样使有机物在曝气池中的分配较为均匀,从而避免了前端缺氧、后端氧过剩的弊病,从而提高了空气的利用效率和曝气池的工作能力;并且由于容易改变各个进水口的水量,在运行上也有较大的灵活性。经实践证明,曝气池容积同普通活性污泥法比较可以缩小30%左右。
不要轻言放弃,否则对不起自己!
20楼2009-01-09 08:41:21
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 追忆似水流年 的主题更新
信息提示
请填处理意见