| 查看: 2701 | 回复: 7 | ||
[求助]
受迫duffing振子的吸引盆程序求助
|
|
我在做一个受简谐激励力作用下duffing方程的研究,需要绘制其吸引域。目前查书和文献了解了一下吸引域的绘制方法,但是对编程还是没有头绪,能否提供一个duffing方程吸引域绘制的程序或者类似的程序让我参考一下? 我所做的duffing方程为 dx=[x(2); F*cos(Omega*t)-(0.02*x(2)+x(1)+0.54/(1-0.54)*x(1)*(1-1/(sqrt(0.54^2+x(1).^2))))] F=0.01; Omega=0.54. 不胜感激各位高手的帮助!!! |
» 猜你喜欢
参与限项
已经有3人回复
假如你的研究生提出不合理要求
已经有7人回复
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
2楼2017-03-08 16:38:00
3楼2017-03-08 20:53:25
小破0207
新虫 (著名写手)
- 应助: 0 (幼儿园)
- 金币: 17012.1
- 散金: 666
- 帖子: 1741
- 在线: 53.2小时
- 虫号: 3882370
- 注册: 2015-05-18
- 专业: 信号理论与信号处理
4楼2017-03-08 22:52:58
|
Roughly speaking, an attractor of a dynamical system is a subset of the state space to which orbits originating from typical initial conditions tend as time increases. It is very common for dynamical systems to have more than one attractor. For each such attractor, its basin of attraction is the set of initial conditions leading to long-time behavior that approaches that attractor. Thus the qualitative behavior of the long-time motion of a given system can be fundamentally different depending on which basin of attraction the initial condition lies in (e.g., attractors can correspond to periodic, quasiperiodic or chaotic behaviors of different types). Regarding a basin of attraction as a region in the state space, it has been found that the basic topological structure of such regions can vary greatly from system to system. In what follows we give examples and discuss several qualitatively different kinds of basins of attraction and their practical implications. 从scholarpedia上找到的解释。 |
5楼2017-03-10 14:24:22
6楼2017-06-08 12:52:24

7楼2017-11-24 17:38:48

8楼2017-12-09 08:45:38












回复此楼