24小时热门版块排行榜    

查看: 2207  |  回复: 0

小李茂刚

新虫 (正式写手)

[求助] 响应面实验结果,麻烦哪位大神帮我仔细分析一下,麻烦谢谢!

Use your mouse to right click on individual cells for definitions.
Response        1        转化率
        ANOVA for Response Surface Quadratic Model
Analysis of variance table [Partial sum of squares - Type III]
        Sum of                Mean        F        p-value
Source        Squares        df        Square        Value        Prob > F
Model        0.81        9        0.090        401.47        < 0.0001        significant
  A-浓度        0.056        1        0.056        251.16        < 0.0001
  B-液固比        0.62        1        0.62        2771.53        < 0.0001
  C-温度        4.599E-003        1        4.599E-003        20.62        0.0027
  AB        0.027        1        0.027        119.37        < 0.0001
  AC        1.692E-004        1        1.692E-004        0.76        0.4126
  BC        4.260E-003        1        4.260E-003        19.10        0.0033
  A^2        6.821E-004        1        6.821E-004        3.06        0.1238
  B^2        0.094        1        0.094        421.55        < 0.0001
  C^2        3.538E-003        1        3.538E-003        15.86        0.0053
Residual        1.561E-003        7        2.230E-004
Lack of Fit        1.132E-003        3        3.772E-004        3.51        0.1282        not significant
Pure Error        4.297E-004        4        1.074E-004
Cor Total        0.81        16

The Model F-value of 401.47 implies the model is significant.  There is only
a 0.01% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant.  
In this case A, B, C, AB, BC, B++2+-, C++2+- are significant model terms.  
Values greater than 0.1000 indicate the model terms are not significant.  
If there are many insignificant model terms (not counting those required to support hierarchy),  
model reduction may improve your model.

The "Lack of Fit F-value" of 3.51 implies the Lack of Fit is not significant relative to the pure
error.  There is a 12.82% chance that a "Lack of Fit F-value" this large could occur due
to noise.  Non-significant lack of fit is good -- we want the model to fit.

Std. Dev.        0.015        R-Squared        0.9981
Mean        0.79        Adj R-Squared        0.9956
C.V. %        1.90        Pred R-Squared        0.9767
PRESS        0.019        Adeq Precision        65.140

The "Pred R-Squared" of 0.9767 is in reasonable agreement with the "Adj R-Squared" of 0.9956.

"Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your
ratio of 65.140 indicates an adequate signal.  This model can be used to navigate the design space.

Coefficient        Standard        95% CI        95% CI
Factor        Estimate        df        Error        Low        High        VIF
Intercept        0.84        1        6.679E-003        0.82        0.85
A-浓度        0.084        1        5.280E-003        0.071        0.096        1.00
B-液固比        0.28        1        5.280E-003        0.27        0.29        1.00
C-温度        -0.024        1        5.280E-003        -0.036        -0.011        1.00
AB        -0.082        1        7.467E-003        -0.099        -0.064        1.00
AC        6.505E-003        1        7.467E-003        -0.011        0.024        1.00
BC        0.033        1        7.467E-003        0.015        0.050        1.00
A^2        0.013        1        7.278E-003        -4.482E-003        0.030        1.01
B^2        -0.15        1        7.278E-003        -0.17        -0.13        1.01
C^2        0.029        1        7.278E-003        0.012        0.046        1.01



Final Equation in Terms of Coded Factors:

转化率         =
+0.84
+0.084         * A
+0.28         * B
-0.024         * C
-0.082         * A * B
+6.505E-003         * A * C
+0.033         * B * C
+0.013         * A^2
-0.15         * B^2
+0.029         * C^2

Final Equation in Terms of Actual Factors:

转化率         =
+0.46813
-0.016262         * 浓度
+0.33861         * 液固比
-0.019780         * 温度
-5.09902E-003         * 浓度 * 液固比
+8.13091E-005         * 浓度 * 温度
+4.07953E-004         * 液固比 * 温度
+7.95503E-004         * 浓度^2
-9.33946E-003         * 液固比^2
+7.24667E-005         * 温度^2


The Diagnostics Case Statistics Report has been moved to the Diagnostics Node.
In the Diagnostics Node, Select Case Statistics from the View Menu.

Proceed to Diagnostic Plots (the next icon in progression).  Be sure to look at the:
   1) Normal probability plot of the studentized residuals to check for normality of residuals.
   2) Studentized residuals versus predicted values to check for constant error.
   3) Externally Studentized Residuals to look for outliers, i.e., influential values.
   4) Box-Cox plot for power transformations.

If all the model statistics and diagnostic plots are OK, finish up with the Model Graphs icon.@月只蓝@beefly
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 小李茂刚 的主题更新
信息提示
请填处理意见