| 查看: 630 | 回复: 2 | ||
| 【悬赏金币】回答本帖问题,作者雨薇汐梦将赠送您 50 个金币 | ||
[求助]
英语大咖们,谁会大概翻译这几段 已有1人参与
|
||
|
For billions of years, oxygenic phototrophs have supported life on planet Earth by harvesting solar energy to produce oxygen, protons,cellular energy (ATP), and electrons in the form of reductant. This reductant is used to produce the building blocks of life (carbohydrates, proteins, lipids, and nucleic acids) from inorganic materials (CO2, nitrogen, phosphorus, sulfur, etc.). Additionally, this reductant can reduce protons to make hydrogen gas in certain oxygenic phototrophs. This latter fact has spurred much interest in the development of cyanobacteria and algae to produce hydrogen as a clean, CO2-neutral energy carrier using sunlight as the source of energy and water as the only net substrate. Theoretical maximum efficiencies for hydrogen production (Solar Energy?Hydrogen Chemical Energy) with water as the electron donor range from 10% to 13% (Ghirardi et al., 2009). This calculation is based on incident light (of which only 45% is absorbed by the algae and cyanobacteria) and assumes a photon energy at 550 nm as the average energy for the entire solar spectrum. This is in contrast to the calculation by Prince and Kheshgi that used only the absorbed light at 680 nm and reported an overestimated light conversion efficiency of 40.7% (Prince and Kheshgi, 2005). At a 9.2% solar energy conversion efficiency, photosynthetic hydrogen is projected to have a production cost under 3 dollars/kg (1 kg hydrogen is equivalent to the energy content of 1 gallon of gasoline) (James et al., 2009). However, demonstrated conversion efficiencies are much lower or, in many cases, not reported. A few photochemical efficiencies have recently been summarized by Brentner et al. (2010), although only three reports are cited for (laboratory) photochemical efficiency of hydrogen production with water as the electron donor. These reported efficiencies are 0.04% and 0.14% in cyanobacteria and 1.33% in the green alga Chlamydomonas reinhardtii. Kosourov and Seibert (2009) have published even higher peak efficiencies for immobilized C. reinhardtii cells (as high as 1.53%), although these efficiencies were achieved under low light laboratory conditions. |
» 猜你喜欢
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
假如你的研究生提出不合理要求
已经有6人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
所感
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有28人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
【答案】应助回帖
|
上亿年来,产氧光自营生物(?)通过转化太阳能来生产氧气,分子级能量(ATP),和还原剂中的电子,供养着地球上的生命。这些还原剂被用于从无机物(二氧化碳,氮气,磷,硫等)中构建生命的基石(碳水化合物,蛋白质,油脂和核酸)。此外,在某些产氧光自营生物中这些还原剂可以还原质子来生产氢气。这种能力,驱动着在光能和水培养基条件下,利用蓝藻和海藻,来生产清洁的碳中立能源-氢气的研究的发展 以水作为电子供给物的条件下,生产氢气(光解法)的理论最大效率为10%-13%(Ghirardi et al., 2009)。计算基于入射光的45%被蓝藻和海藻吸收,以及假定全部太阳光谱的平均能量为550nm的光子能量。作为对比,Prince 和Kheshgi假定全部太阳光谱的平均能量为680nm的光子能量,并得出了一个高估了的40.7%的光转化效率(Prince and Kheshgi, 2005). 在9.2%的太阳能转化效率下,光解氢气的生产成本被预计为3美元/公斤(一公斤氢气的能量与一加仑汽油相等)(James et al., 2009)。然而,在实际转化效率远低于此,甚至在很多情况下作者不报告实际转化效率。Brentner等人收集了一些光化学效率的数据,但其中只有三例是以水作为电子供给物条件下的制氢效率。结果为,在蓝藻条件下的0.04%,0.14%和在绿藻条件下的1.33%。Kosourov和Seibert在C. reinhardtii细胞下取得了效率峰值(高达1.53%),但他们的实验条件是低频实验光(?)。 好久没翻译了有点手生 但是应该还可以吧 开头结尾各有一个专业单词不确定 |
2楼2017-02-21 15:22:35
3楼2017-02-21 17:25:08












回复此楼