| 查看: 914 | 回复: 1 | ||
[求助]
n次函数的极值点有极限吗?
|
|
一个二元n次函数如下,f[x_, y_] := (10 + 3 x + y)^n + (-10 - 9 y + 3 x)^n + (-10 - 5 x - 5 y)^ n + (10 - 5 x + 5 y)^n; 我发现n=2时,在(-4/7,-34/21)处函数取极小值(驻点),然后我用mathematica验算了更大的n的情况,发现驻点逐步逼近(-1,-2)。 下面是我的问题:怎么证明(-1,-2)是这一系列驻点的极限?此极限可以预先算出来吗? 是否有更一般的结论?(比如在什么条件下,三元函数f(x,y,n)的驻点随n的增大有一个极限?如何求出此极限?) |
» 猜你喜欢
酰胺脱乙酰基
已经有9人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有3人回复
CSC & MSCA 博洛尼亚大学能源材料课题组博士/博士后招生|MSCA经费充足、排名优
已经有5人回复
有70后还继续奋斗在职场上的吗?
已经有6人回复
博士延得我,科研能力直往上蹿
已经有7人回复
退学或坚持读
已经有27人回复
面上基金申报没有其他的参与者成吗
已经有5人回复
遇见不省心的家人很难过
已经有22人回复
|
2楼2017-08-19 16:08:45













回复此楼