| 查看: 1207 | 回复: 14 | |||||
| 【奖励】 本帖被评价12次,作者pkusiyuan增加金币 9.6 个 | |||||
[资源]
Introduction to Relativistic Statistical Mechanics Classical and Quantum
|
|||||
|
Contents Preface xvii Notations and Conventions xix Introduction xxi 1. The One-Particle Relativistic Distribution Function 1 1.1 The One-Particle Relativistic Distribution Function . . . 1 1.1.1 The phase space “volume element” . . . . . . . . 5 1.2 The Jüttner–Synge Equilibrium Distribution . . . . . . . 6 1.2.1 Thermodynamics of the Jüttner–Synge gas . . . 9 1.2.2 Thermal velocity . . . . . . . . . . . . . . . . . . 10 1.2.3 Moments of the Jüttner–Synge function . . . . . 12 1.2.4 Orthogonal polynomials . . . . . . . . . . . . . . 13 1.2.5 Zero mass particles . . . . . . . . . . . . . . . . . 15 1.3 From the Microcanonical Distribution to the Jüttner–Synge One . . . . . . . . . . . . . . . . . 16 1.4 Equilibrium Fluctuations . . . . . . . . . . . . . . . . . . 19 1.5 One-Particle Liouville Theorem . . . . . . . . . . . . . . 21 1.5.1 Relativistic Liouville equation from the Hamiltonian equations of motion . . . . . . . . . 22 1.5.2 Conditions for the Jüttner–Synge functions to be an equilibrium . . . . . . . . . . . . . . . . 24 1.6 The Relativistic Rotating Gas . . . . . . . . . . . . . . . 24 2. Relativistic Kinetic Theory and the BGK Equation 27 2.1 Relativistic Hydrodynamics . . . . . . . . . . . . . . . . 29 2.1.1 Sound velocity . . . . . . . . . . . . . . . . . . . 31 2.1.2 The Eckart approach . . . . . . . . . . . . . . . . 32 2.1.3 The Landau–Lifschitz approach . . . . . . . . . . 34 vii viii Introduction to Relativistic Statistical Mechanics: Classical and Quantum 2.2 The Relaxation Time Approximation . . . . . . . . . . . 35 2.3 The Relativistic Kinetic Theory Approach to Hydrodynamics . . . . . . . . . . . . . . . . . . . . . 36 2.4 The Static Conductivity Tensor . . . . . . . . . . . . . . 40 2.5 Approximation Methods for the Relativistic Boltzmann Equation and Other Kinetic Equations . . . . . . . . . . 41 2.5.1 A simple Chapman–Enskog approximation . . . 42 2.6 Transport Coefficients for a System Embedded in a Magnetic Field . . . . . . . . . . . . . . . . . . . . . 43 3. Relativistic Plasmas 47 3.1 Electromagnetic Quantities in Covariant Form . . . . . . 47 3.2 The Static Conductivity Tensor . . . . . . . . . . . . . . 50 3.3 Debye–Hückel Law . . . . . . . . . . . . . . . . . . . . . 51 3.4 Derivation of the Plasma Modes . . . . . . . . . . . . . . 52 3.4.1 Evaluation of the various integrals . . . . . . . . 55 3.4.2 Collective modes in extreme cases . . . . . . . . 56 3.5 Brief Discussion of the Plasma Modes . . . . . . . . . . . 57 3.6 The Conductivity Tensor . . . . . . . . . . . . . . . . . . 62 3.7 Plasma–Beam Instability . . . . . . . . . . . . . . . . . . 63 3.7.1 Perturbed dispersion relations for the plasma–beam system . . . . . . . . . . . 63 3.7.2 Stability of the beam–plasma system . . . . . . . 64 4. Curved Space–Time and Cosmology 67 4.1 Basic Modifications . . . . . . . . . . . . . . . . . . . . . 68 4.2 Thermal Equilibrium in a Gravitational Field . . . . . . 70 4.2.1 Thermal equilibrium in a static isotropic metric . . . . . . . . . . . . . . . . . . . 71 4.3 Einstein–Vlasov Equation . . . . . . . . . . . . . . . . . 71 4.3.1 Linearization of Einstein’s equation . . . . . . . . 72 4.3.2 The formal solution to the linearized Einstein equation . . . . . . . . . . . . . . . . . . 74 4.3.3 The self-consistent kinetic equation for the gravitating gas . . . . . . . . . . . . . . . 76 Contents ix 4.4 An Illustration in Cosmology . . . . . . . . . . . . . . . 76 4.4.1 The two-timescale approximation . . . . . . . . . 78 4.4.2 Derivation of the dispersion relations (a rough outline) . . . . . . . . . . . . . . . . . . 80 4.5 Cosmology and Relativistic Kinetic Theory . . . . . . . 81 4.5.1 Cosmology: a very brief overview . . . . . . . . . 82 4.5.2 Kinetic theory and cosmology . . . . . . . . . . . 85 4.5.3 Kinetic theory of the observed universe . . . . . 87 4.5.4 Statistical mechanics in the primeval universe . . . . . . . . . . . . . . . . . . . . . . . 88 4.5.5 Particle survival . . . . . . . . . . . . . . . . . . 90 5. Relativistic Statistical Mechanics 94 5.1 The Dynamical Problem . . . . . . . . . . . . . . . . . . 94 5.2 Statement of the Main Statistical Problems . . . . . . . 96 5.2.1 The initial value problem: observations and measures . . . . . . . . . . . . . . . . . . . . 97 5.2.2 Phase space and the Gibbs ensemble . . . . . . . 100 5.3 Many-Particle Distribution Functions . . . . . . . . . . . 102 5.3.1 Statistics of the particles’ manifolds . . . . . . . 103 5.4 The Relativistic BBGKY Hierarchy . . . . . . . . . . . . 105 5.4.1 Cluster decomposition of the relativistic distribution functions . . . . . . . . . . . . . . . 107 5.5 Self-interaction and Radiation . . . . . . . . . . . . . . . 109 5.5.1 An alternative treatment of radiation reaction . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.2 Remarks on irreversibility . . . . . . . . . . . . 113 5.5.3 Remarks on thermal equilibrium . . . . . . . . . 114 5.6 Radiation Quantities . . . . . . . . . . . . . . . . . . . . 116 5.7 A Few Relativistic Kinetic Equations . . . . . . . . . . . 118 5.7.1 Derivation of the covariant Landau equation . . . . . . . . . . . . . . . . . . . . . . . 118 5.7.2 The relativistic Vlasov equation with radiation effects . . . . . . . . . . . . . . . . 121 5.7.3 Radiation effects for a relativistic plasma in a magnetic field . . . . . . . . . . . . . . . . . 124 5.8 Statistics of Fields and Particles . . . . . . . . . . . . . . 125 x Introduction to Relativistic Statistical Mechanics: Classical and Quantum 6. Relativistic Stochastic Processes and Related Questions 128 6.1 Stochastic Processes in Minkowski Space–Time . . . . . 129 6.1.1 Basic definitions . . . . . . . . . . . . . . . . . . 130 6.1.2 Conditional currents . . . . . . . . . . . . . . . . 131 6.1.3 Markovian processes in space–time . . . . . . . . 131 6.2 Stochastic Processes in μ Space . . . . . . . . . . . . . . 133 6.2.1 An overview . . . . . . . . . . . . . . . . . . . . . 134 6.2.2 Markovian processes . . . . . . . . . . . . . . . . 135 6.2.3 An alternative approach . . . . . . . . . . . . . . 137 6.2.4 Markovian processes . . . . . . . . . . . . . . . . 139 6.2.5 A simple illustration . . . . . . . . . . . . . . . . 140 6.3 Relativistic Brownian Motion . . . . . . . . . . . . . . . 142 6.4 Random Gravitational Fields: An Open Problem . . . . 144 6.4.1 A simple example . . . . . . . . . . . . . . . . . 148 6.4.2 The case of thermal equilibrium . . . . . . . . . 149 6.4.3 Matter-induced fluctuations . . . . . . . . . . . . 150 6.4.4 Random Einstein equations . . . . . . . . . . . . 151 7. The Density Operator 152 7.1 The Density Operator for Thermal Equilibrium . . . . . 153 7.1.1 Thermodynamic properties . . . . . . . . . . . . 154 7.1.2 The partition function of the relativistic ideal gas . . . . . . . . . . . . . . . . . . . . . . . 156 7.1.3 The average occupation number . . . . . . . . . 158 7.2 Relativistic Bosons in Thermal Equilibrium . . . . . . . 159 7.2.1 The complex scalar field . . . . . . . . . . . . . . 161 7.2.2 Charge fluctuations . . . . . . . . . . . . . . . . 164 7.2.3 A few remarks on the calculation of various integrals . . . . . . . . . . . . . . . . . 164 7.2.4 Bose–Einstein condensation . . . . . . . . . . . . 165 7.2.5 Interactions . . . . . . . . . . . . . . . . . . . . . 167 7.3 Free Fermions in Thermal Equilibrium . . . . . . . . . . 171 7.4 Thermodynamic Properties of the Relativistic Ideal Fermi–Dirac Gas . . . . . . . . . . . . . . . . . . . 174 7.4.1 Remarks on the numerical calculations of various physical quantities . . . . . . . . . . . 175 7.4.2 The degenerate Fermi gas . . . . . . . . . . . . . 175 7.4.3 Thermal corrections: Sommerfeld expansion . . . 177 Contents xi 7.4.4 Corrections for various thermodynamic quantities . . . . . . . . . . . . . . . . . . . . . . 179 7.4.5 High temperature expansion (nondegenerate) . . 180 7.5 White Dwarfs: The Degenerate Electron Gas . . . . . . . 181 7.5.1 Cooling of white dwarfs . . . . . . . . . . . . . . 185 7.5.2 Pycnonuclear reactions . . . . . . . . . . . . . . . 187 7.6 Functional Representation of the Partition Function . . 187 7.6.1 The partition function for gauge particles (photons) . . . . . . . . . . . . . . . . . 188 7.6.2 The photons’ partition function . . . . . . . . . . 189 7.6.3 Illustration in the case of the Lorentz gauge . . . 191 8. The Covariant Wigner Function 194 8.1 The Covariant Wigner Function for Spin 1/2 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8.1.1 Basic equations . . . . . . . . . . . . . . . . . . . 197 8.1.2 The equilibrium Wigner function for free fermions . . . . . . . . . . . . . . . . . . 200 8.1.3 Polarized media . . . . . . . . . . . . . . . . . . . 201 8.2 Equilibrium Fluctuations of Fermions . . . . . . . . . . . 204 8.3 A Simple Example . . . . . . . . . . . . . . . . . . . . . 207 8.4 The BBGKY Relativistic Quantum Hierarchy . . . . . . 208 8.5 Perturbation Expansion of the Wigner Function . . . . . 211 8.6 The Wigner Function for Bosons . . . . . . . . . . . . . 213 8.6.1 The example of the λϕ 4 theory . . . . . . . . . . 216 8.6.2 Four-current fluctuations of the complex scalar field . . . . . . . . . . . . . . . . . . . . . 217 8.7 Gauge Properties of the Wigner Function . . . . . . . . 218 8.7.1 Gauge-invariant Wigner functions . . . . . . . . 218 8.7.2 A few remarks . . . . . . . . . . . . . . . . . . . 222 8.7.3 Gauge-invariant Wigner functions for the photon field . . . . . . . . . . . . . . . . . 223 8.7.4 Another gauge-invariant Wigner function . . . . 225 8.7.5 Gauge invariance and approximations . . . . . . 226 9. Fermions Interacting via a Scalar Field: A Simple Example 228 9.1 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . 229 9.2 Collective Modes . . . . . . . . . . . . . . . . . . . . . . 233 xii Introduction to Relativistic Statistical Mechanics: Classical and Quantum 9.3 Two-Body Correlations . . . . . . . . . . . . . . . . . . . 234 9.3.1 A brief discussion . . . . . . . . . . . . . . . . . . 237 9.3.2 Exchange correlations . . . . . . . . . . . . . . . 238 9.4 Renormalization — An Illustration of the Procedure . . 240 9.4.1 Regularization of the gap equation . . . . . . . . 241 9.4.2 Regularization of the energy–momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . 244 9.4.3 Determination of the constants (A F ,B F ,C F ,D F ) . . . . . . . . . . . . . . . . . 245 9.5 Qualitative Discussion of the Effects of Renormalization . . . . . . . . . . . . . . . . . . . . . 246 9.6 Thermodynamics of the System . . . . . . . . . . . . . . 249 9.6.1 The gap equation as a minimum of the free energy . . . . . . . . . . . . . . . . . . 250 9.6.2 Thermodynamics . . . . . . . . . . . . . . . . . . 251 9.7 Renormalization of the Excitation Spectrum . . . . . . . 253 9.7.1 Comparison with the semiclassical case . . . . . 257 9.8 A Short Digression on Bosons . . . . . . . . . . . . . . . 258 10. Covariant Kinetic Equations in the Quantum Domain 262 10.1 General Form of the Kinetic Equation . . . . . . . . . . 264 10.2 An Introductory Example . . . . . . . . . . . . . . . . . 265 10.3 A General Relaxation Time Approximation . . . . . . . 269 10.3.1 Properties of the kinetic system . . . . . . . . . . 270 10.3.2 The collision term . . . . . . . . . . . . . . . . . 272 10.3.3 General form of F (1) . . . . . . . . . . . . . . . . 274 11. Application to Nuclear Matter 277 11.1 Thermodynamic Properties at Finite Temperature . . . 279 11.1.1 Thermodynamics in some important cases . . . . 282 11.2 Remarks on the Oscillation Spectra of Mesons . . . . . . 285 11.3 Transport Coefficients of Nuclear Matter . . . . . . . . . 286 11.3.1 Chapman–Enskog expansion . . . . . . . . . . . 288 11.3.2 Transport coefficients: Eckart versus Landau–Lifschitz representations . . . . . . . . . 290 11.3.3 Entropy production . . . . . . . . . . . . . . . . 293 11.3.4 A brief comparison: BGK versus BUU . . . . . . 297 11.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Contents xiii 11.5 Dense Nuclear Matter: Neutron Stars . . . . . . . . . . . 302 11.5.1 The static equilibrium of a neutron star . . . . . 303 11.5.2 The composition of matter in a neutron star . . 304 11.5.3 Beyond the drip point . . . . . . . . . . . . . . . 307 12. Strong Magnetic Fields 309 12.1 Relations Obeyed by the Magnetic Field . . . . . . . . . 312 12.2 The Partition Function . . . . . . . . . . . . . . . . . . . 314 12.2.1 Magnetization of an electron gas . . . . . . . . . 317 12.3 Relativistic Quantum Liouville Equation . . . . . . . . . 319 12.3.1 Solution of the inhomogeneous equation . . . . . 321 12.3.2 The initial value problem . . . . . . . . . . . . . 323 12.4 The Equilibrium Wigner Function for Noninteracting Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.4.1 Thermodynamic quantities . . . . . . . . . . . . 325 12.5 The Wigner Function of the Ideal Magnetized Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . 326 12.5.1 The nonmagnetic field limit . . . . . . . . . . . . 328 12.5.2 Equations of state . . . . . . . . . . . . . . . . . 329 12.5.3 Is the pressure isotropic? . . . . . . . . . . . . . 330 12.5.4 The completely degenerate case . . . . . . . . . . 331 12.5.5 Magnetization . . . . . . . . . . . . . . . . . . . 333 12.5.6 Landau orbital ferromagnetism: LOFER states . . . . . . . . . . . . . . . . . . . 335 12.6 The Magnetized Vacuum . . . . . . . . . . . . . . . . . . 336 12.6.1 The general structure of the vacuum Wigner function . . . . . . . . . . . . . . . . . . 336 12.6.2 The Wigner function of the magnetized vacuum . . . . . . . . . . . . . . . . . . . . . . . 338 12.6.3 Renormalization of the vacuum Wigner function . . . . . . . . . . . . . . . . . . 339 12.7 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 340 12.7.1 Fluctuations of the four-current . . . . . . . . . . 341 12.8 Polarization Tensors of the Magnetized Electron Gas and of the Magnetized Vacuum . . . . . . . . . . . . . . 348 12.8.1 The vacuum polarization tensor . . . . . . . . . . 349 12.9 Remarks on the Transport Coefficients of the Magnetized Electron Gas . . . . . . . . . . . . . . 350 12.10 Astrophysical Aspects . . . . . . . . . . . . . . . . . . . 353 xiv Introduction to Relativistic Statistical Mechanics: Classical and Quantum 13. Statistical Mechanics of Relativistic Quasiparticles 356 13.1 Classical Fields . . . . . . . . . . . . . . . . . . . . . . . 359 13.1.1 Internal symmetries and conserved currents . . . 360 13.1.2 Space–time symmetries . . . . . . . . . . . . . . 363 13.1.3 A general remark . . . . . . . . . . . . . . . . . . 367 13.2 Quantum Quasiparticles . . . . . . . . . . . . . . . . . . 370 13.2.1 Formal quantization . . . . . . . . . . . . . . . . 371 13.3 Problems with the Quantization of Quasiparticles . . . . 374 13.3.1 A first example . . . . . . . . . . . . . . . . . . . 374 13.3.2 Another example the QED plasma . . . . . . . . 376 13.3.3 Migdal’s approach . . . . . . . . . . . . . . . . . 377 13.4 The Covariant Wigner Function . . . . . . . . . . . . . . 379 13.5 Equilibrium Properties . . . . . . . . . . . . . . . . . . . 382 13.6 A Simple Example: The λφ 4 Model . . . . . . . . . . . . 385 13.7 Remarks on the Thermodynamics of Quasiparticles . . . 388 13.8 Equilibrium Fluctuations . . . . . . . . . . . . . . . . . . 391 13.9 Remarks on the Negative Energy Modes . . . . . . . . . 394 13.10 Interacting Quasibosons . . . . . . . . . . . . . . . . . . 395 13.10.1 The long wavelength and low frequency limit . . 398 14. The Relativistic Fermi Liquid 400 14.1 Independent Quasifermions . . . . . . . . . . . . . . . . 400 14.1.1 Quantization and observables . . . . . . . . . . . 402 14.1.2 Statistical expressions . . . . . . . . . . . . . . . 405 14.1.3 Thermal equilibrium . . . . . . . . . . . . . . . . 406 14.2 Interacting Quasifermions . . . . . . . . . . . . . . . . . 407 14.2.1 The long wavelength and low frequency limit . . 409 14.3 Kinetic Equation for Quasiparticles . . . . . . . . . . . . 410 14.4 Remarks on the Relativistic Landau Theory . . . . . . . 412 15. The QED Plasma 422 15.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . 422 15.2 Plasma Collective Modes . . . . . . . . . . . . . . . . . . 423 15.3 The Fluctuation–Dissipation Theorem and Its Inverse . 428 15.4 Four-Current Fluctuations and the Polarization Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 15.5 The Polarization Tensor at Order e 2 . . . . . . . . . . . 433 15.6 Quasiparticles in the Relativistic Plasma . . . . . . . . . 436 Contents xv 15.6.1 Quasiphotons in thermal equilibrium . . . . . . . 436 15.6.2 Gauge properties . . . . . . . . . . . . . . . . . . 440 15.6.3 Quasielectron modes in thermal equilibrium . . . 442 Appendix A: A Few Useful Properties of Some Special Functions 446 A.1 Kelvin’s Functions . . . . . . . . . . . . . . . . . . . . . 446 A.2 Associated Laguerre Polynomials . . . . . . . . . . . . . 447 Appendix B: γ Matrices 448 Appendix C: Outline of Functional Methods 451 C.1 Functional Differentiation . . . . . . . . . . . . . . . . . 452 C.2 Functional Integration . . . . . . . . . . . . . . . . . . . 453 Appendix D: Units 457 D.1 Ordinary Units . . . . . . . . . . . . . . . . . . . . . . . 457 D.2 Other Units of Interest . . . . . . . . . . . . . . . . . . . 458 Appendix E: Some Useful Formulae for Wigner Functions 460 E.1 Useful Formulae for Bosons . . . . . . . . . . . . . . . . 460 E.2 Useful Formulae for Fermions . . . . . . . . . . . . . . . 462 Bibliography 465 Index 529 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Introduction_to_Relativistic_Statistical_Mechanics_Classical_and_Quantum_-_Hakim,_2011.pdf
2016-11-03 01:08:14, 5.14 M
» 收录本帖的淘帖专辑推荐
精华网帖收集 | 自然科学 | 理论物理专著 |
» 猜你喜欢
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有7人回复
申请2026年博士
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有6人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
The Finite Volume Method in Computational Fluid Dynamics:An Advanced Introducti
已经有2人回复
The Finite Volume Method in Computational Fluid Dynamics:An Advanced Introducti
已经有6人回复
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introducti
已经有4人回复
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introducti
已经有4人回复
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introducti
已经有1人回复
Introduction to the Physical and Biological Oceanography
已经有1人回复
流形的一些书籍资料【转载】
已经有90人回复
简单回复
2016-11-03 07:59
回复
五星好评 顶一下,感谢分享!
2016-11-03 10:46
回复
五星好评 顶一下,感谢分享!
2016-11-03 15:32
回复
五星好评 顶一下,感谢分享!
2016-11-03 17:04
回复
五星好评 顶一下,感谢分享!
ha16686楼
2016-11-05 00:20
回复
五星好评 顶一下,感谢分享!
2016-11-06 23:55
回复
五星好评 顶一下,感谢分享!
2016-12-06 08:44
回复
五星好评 顶一下,感谢分享!
lucklin9楼
2017-01-02 11:01
回复
五星好评 顶一下,感谢分享!
cryohuang10楼
2017-02-11 15:01
回复
五星好评 顶一下,感谢分享!
taopia11楼
2017-02-12 14:10
回复
五星好评 顶一下,感谢分享!
lucklin12楼
2017-02-12 17:39
回复
顶一下,感谢分享!
mbchen13楼
2017-08-17 07:32
回复
五星好评 顶一下,感谢分享!
yzzmt14楼
2017-08-27 14:37
回复
五星好评 顶一下,感谢分享!
chxiong838115楼
2019-03-22 10:00
回复
顶一下,感谢分享!













回复此楼