²é¿´: 1013  |  »Ø¸´: 4

jimyang2008

ľ³æ (ÕýʽдÊÖ)

[ÇóÖú] ÓÐÌõ¼þµÄ°ïæ²éѯһÏÂÂÛÎÄSCIÊÕ¼Çé¿öÒÑÓÐ2È˲ÎÓë

¸÷λ³æÓÑ£º
      ÎÒÏÖÔÚÓÐÁ½ÆªÂÛÎÄ·¢ÁË¿ì2¸öÔÂÁË£¬²»ÖªµÀÊÇ·ñ±»sciÊÕ¼¡£ÓÉÓÚµ¥Î»Ã»Ìõ¼þ²éѯ
Ë­Äܰïæ²éѯһÏÂÂÛÎÄSCIÊÕ¼ºÅ£¬²¢½«ÊÕÂ¼Ò³ÃæÒÔÍøÒ³½ØÍ¼»òpdfÐÎʽ·¢Ë͵½ÓÊÏ䣺
  jimyang2008@163.com.
ÏÈлл´ó¼ÒÁË£¡
£¨1£©
ÆÚ¿¯£ºcomputational intelligence and neuroscience
ÂÛÎÄÃû£ºDeep Convolutional Extreme Learning Machine and its application in Handwritten Digit Classification
µÚÒ»×÷ÕߣºShan Pang
£¨2£©
ÆÚ¿¯£ºInternational Journal of Aerospace Engineering
ÂÛÎÄÃû£ºAero Engine Component Fault Diagnosis Using
Multi-Hidden-Layer Extreme Learning Machine with Optimized
Structure
µÚÒ»×÷ÕߣºShan Pang
»Ø¸´´ËÂ¥
µ±¶¬Ò¹½¥Å¯......
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

×Ô˽µÄè1988

ÈÙÓþ°æÖ÷ (ÎÄ̳¾«Ó¢)

ÓÅÐã°æÖ÷ÓÅÐã°æÖ÷ÓÅÐã°æÖ÷ÓÅÐã°æÖ÷ÓÅÐã°æÖ÷ÓÅÐã°æÖ÷

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
paperhunter: ½ð±Ò+2, ¹ÄÀø½»Á÷ 2016-10-17 20:08:45
Èë²ØºÅ: WOS:000382046500001
Èë²ØºÅ: WOS:000382664100001
2Â¥2016-10-17 19:51:53
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

С·²ÏÂɽ

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
jimyang2008(paperhunter´ú·¢): ½ð±Ò+15, ¹ÄÀø½»Á÷ 2016-10-17 20:10:33
Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification
×÷Õßang, S (Pang, Shan)[ 1 ] ; Yang, XY (Yang, Xinyi)[ 2 ]
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
ÎÄÏ׺Å: 3049632
DOI: 10.1155/2016/3049632
³ö°æÄê: 2016
²é¿´ÆÚ¿¯ÐÅÏ¢
ÕªÒª
In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.
¹Ø¼ü´Ê
KeyWords Plus:IMAGE RECOGNITION; BELIEF NETWORKS; NEURAL-NETWORKS; EFFICIENT
×÷ÕßÐÅÏ¢
ͨѶ×÷ÕßµØÖ·: Pang, S (ͨѶ×÷Õß)
ÏÔʾÔöÇ¿×éÖ¯ÐÅÏ¢µÄÃû³Æ        Ludong Univ, Coll Elect & Informat Engn, Yantai 264025, Peoples R China.
µØÖ·:
ÏÔʾÔöÇ¿×éÖ¯ÐÅÏ¢µÄÃû³Æ        [ 1 ] Ludong Univ, Coll Elect & Informat Engn, Yantai 264025, Peoples R China
              [ 2 ] Naval Aeronaut & Astronaut Univ, Dept Aircraft Engn, Yantai 264001, Peoples R China
µç×ÓÓʼþµØÖ·:pangshanpp@163.com
³ö°æÉÌ
HINDAWI PUBLISHING CORP, 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA
Àà±ð / ·ÖÀà
Ñо¿·½Ïò:Mathematical & Computational Biology; Neurosciences & Neurology
Web of Science Àà±ð:Mathematical & Computational Biology; Neurosciences
ÎÄÏ×ÐÅÏ¢
ÎÄÏ×ÀàÐÍ:Article
ÓïÖÖ:English
Èë²ØºÅ: WOS:000382046500001
ISSN: 1687-5265
eISSN: 1687-5273
ÆÚ¿¯ÐÅÏ¢
Impact Factor (Ó°ÏìÒò×Ó): Journal Citation Reports®
ÆäËûÐÅÏ¢
IDS ºÅ: DU2MZ
Web of Science ºËÐĺϼ¯ÖÐµÄ "ÒýÓõIJο¼ÎÄÏ×": 31
Web of Science ºËÐĺϼ¯ÖÐµÄ "±»ÒýƵ´Î": 0
3Â¥2016-10-17 19:52:19
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

С·²ÏÂɽ

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï ¡ï
jimyang2008: ½ð±Ò+15, ¡ï¡ï¡ï¡ï¡ï×î¼Ñ´ð°¸, ллС·²ÏÂɽ£¬ÒѾ­ÏÂÔØÁËpdf 2016-10-18 09:51:32
Aero Engine Component Fault Diagnosis Using Multi-Hidden-Layer Extreme Learning Machine with Optimized Structure
×÷Õßang, S (Pang, Shan)[ 1 ] ; Yang, XY (Yang, Xinyi)[ 2 ] ; Zhang, XF (Zhang, Xiaofeng)[ 1 ]
INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING
ÎÄÏ׺Å: 1329561
DOI: 10.1155/2016/1329561
³ö°æÄê: 2016
²é¿´ÆÚ¿¯ÐÅÏ¢
ÕªÒª
A new aero gas turbine engine gas path component fault diagnosis method based on multi-hidden-layer extreme learning machine with optimized structure (OM-ELM) was proposed. OM-ELM employs quantum-behaved particle swarm optimization to automatically obtain the optimal network structure according to both the root mean square error on training data set and the norm of output weights. The proposed method is applied to handwritten recognition data set and a gas turbine engine diagnostic application and is compared with basic ELM, multi-hidden-layer ELM, and two state-of-the-art deep learning algorithms: deep belief network and the stacked denoising autoencoder. Results show that, with optimized network structure, OM-ELM obtains better test accuracy in both applications and is more robust to sensor noise. Meanwhile it controls the model complexity and needs far less hidden nodes than multi-hidden-layer ELM, thus saving computer memory and making it more efficient to implement. All these advantages make our method an effective and reliable tool for engine component fault diagnosis tool.
¹Ø¼ü´Ê
KeyWords PlusEEP BELIEF NETWORKS; NEURAL-NETWORKS
×÷ÕßÐÅÏ¢
ͨѶ×÷ÕßµØÖ·: Pang, S (ͨѶ×÷Õß)
ÏÔʾÔöÇ¿×éÖ¯ÐÅÏ¢µÄÃû³Æ        Ludong Univ, Coll Informat & Elect Engn, Yantai 264025, Peoples R China.
µØÖ·:
ÏÔʾÔöÇ¿×éÖ¯ÐÅÏ¢µÄÃû³Æ        [ 1 ] Ludong Univ, Coll Informat & Elect Engn, Yantai 264025, Peoples R China
              [ 2 ] Naval Aeronaut & Astronaut Univ, Dept Aircraft Engn, Yantai 264001, Peoples R China
µç×ÓÓʼþµØÖ·:pangshanpp@163.com
³ö°æÉÌ
HINDAWI PUBLISHING CORP, 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA
Àà±ð / ·ÖÀà
Ñо¿·½Ïò:Engineering
Web of Science Àà±ð:Engineering, Aerospace
ÎÄÏ×ÐÅÏ¢
ÎÄÏ×ÀàÐÍ:Article
ÓïÖÖ:English
Èë²ØºÅ: WOS:000382664100001
ISSN: 1687-5966
eISSN: 1687-5974
ÆÚ¿¯ÐÅÏ¢
Impact Factor (Ó°ÏìÒò×Ó): Journal Citation Reports®
ÆäËûÐÅÏ¢
IDS ºÅ: DV1EX
Web of Science ºËÐĺϼ¯ÖÐµÄ "ÒýÓõIJο¼ÎÄÏ×": 26
Web of Science ºËÐĺϼ¯ÖÐµÄ "±»ÒýƵ´Î": 0
4Â¥2016-10-17 19:55:42
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

С·²ÏÂɽ

Ìú¸Ëľ³æ (ÖøÃûдÊÖ)

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

Â¥Ö÷£¬ÕâÁ½ÆªÎÄÕµÄpdf°æ¼ìË÷ÐÅÏ¢£¬Çë¼û¸½¼þ¡£

» ±¾Ìû¸½¼þ×ÊÔ´Áбí

  • »¶Ó­¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
    ±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æÈ¨ÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺xiaomuchong@tal.com
  • ¸½¼þ 1 : Web_of_Science_ºËÐĺϼ¯È«¼Ç¼1.pdf
  • 2016-10-17 20:05:32, 145.46 K
  • ¸½¼þ 2 : Web_of_Science_ºËÐĺϼ¯È«¼Ç¼2.pdf
  • 2016-10-17 20:05:41, 143.99 K
5Â¥2016-10-17 20:05:58
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌø×ª ÎÒÒª¶©ÔÄÂ¥Ö÷ jimyang2008 µÄÖ÷Ìâ¸üÐÂ
×î¾ßÈËÆøÈÈÌûÍÆ¼ö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[»ù½ðÉêÇë] ÎÒ¿´Ä³ºìÊé˵BÃæÉÏÒѾ­ÆÀÉóÍêÁË£¬ÕæµÄÂ𣿠+11 רÖβ»·þ¸ç 2025-07-09 11/550 2025-07-10 17:59 by 6543yes
[»ù½ðÉêÇë] Ò»°ãÌáǰ¼¸Ìì֪ͨ»áÆÀר¼Ò +3 lib0070 2025-07-10 3/150 2025-07-10 17:29 by ѧϰ213
[½Ìʦ֮¼Ò] ÇéÐ÷ +5 Ë®±ùÔÂÔÂÒ°Íà 2025-07-09 6/300 2025-07-10 16:25 by ÂøÍ·ÂúÌì·É
[ÂÛÎÄͶ¸å] Ͷ¸å״̬ÓÉÀ¶É«±äºìÉ«ÊÇɶÒâË¼ÄØ£¿ +4 1329484559 2025-07-09 8/400 2025-07-10 16:15 by TizerÌÆ
[»ù½ðÉêÇë] ¹ØÓÚ´«ÎŹú¼ÒÉç¿Æº¯ÆÀÌá¸ßͨ¹ýÂʵÄÒþÓÇ +13 javoncool 2025-07-06 24/1200 2025-07-10 15:17 by wolfgangHugh
[¿¼²©] ´ó¸ç´ó½ãÃÇ£¬°ïÎÒ·ÖÎö·ÖÎö£¬ÎÒÄÜÉêÇëʲôѧУ²©Ê¿¡£Ïë 26 Äê¶Á¸ö²©¡£ +16 ¹â·üÑîС±¦ 2025-07-07 20/1000 2025-07-10 11:36 by lgyyyy
[Óлú½»Á÷] îÙ̼»¹Ô­Ë«¼ü 500+4 zs869999205 2025-07-05 7/350 2025-07-10 11:29 by syzz001
[»ù½ðÉêÇë] ÊýÀíѧ²¿ÃæÉÏɶʱºò»áÆÀ£¿ +9 oldskin 2025-07-06 14/700 2025-07-10 10:03 by 6543yes
[½Ìʦ֮¼Ò] ÐÁ¿àÀ² +5 Ë®±ùÔÂÔÂÒ°Íà 2025-07-09 7/350 2025-07-10 09:39 by Ë®±ùÔÂÔÂÒ°ÍÃ
[½Ìʦ֮¼Ò] Çë½Ì¸÷λ211½ÌÖ°ºÍº£ÍâÅ£×鲩ºóÄĸöºÃ +5 ·Ü¶·×ŵÄСÖí 2025-07-08 6/300 2025-07-10 08:26 by Quakerbird
[½Ìʦ֮¼Ò] ½¹ÂÇ +10 Ë®±ùÔÂÔÂÒ°Íà 2025-07-07 13/650 2025-07-09 23:07 by Ë®±ùÔÂÔÂÒ°ÍÃ
[»ù½ðÉêÇë] C¿ÚÉÏ»áÃûµ¥³öÀ´ÁË +14 Óê±ù¹²Îè 2025-07-04 17/850 2025-07-09 18:02 by lewterme
[»ù½ðÉêÇë] B¿ÚÇàÄê»ù½ðC +13 ʯÇÅÔÚµÈ 2025-07-07 14/700 2025-07-09 16:21 by angle63211
[»ù½ðÉêÇë] D¿ÚÉÏ»á +8 °®¸ãʵÑéµÄ´óÅóÓ 2025-07-07 8/400 2025-07-09 15:00 by ¿ÆÑдóA
[ÕÒ¹¤×÷] Òª²»Òª´ÓËÄ·Ç´ÇÖ°Ìø²ÛÈ¥985´óѧ»òÕß211´óѧ¾í·ÇÉý¼´×ߣ¿ +8 kynobel 2025-07-06 11/550 2025-07-09 14:10 by Ò׺ÆÌì
[ÂÛÎÄͶ¸å] ºËÐÄÂÛÎÄ +4 СÎÅ·É 2025-07-05 4/200 2025-07-08 20:43 by linjunc
[ÂÛÎÄͶ¸å] ÆÚ¿¯ÇóÖú +6 ÍòʽÔÂ}Òâ 2025-07-04 6/300 2025-07-08 17:57 by Traveller911
[»ù½ðÉêÇë] 2025ÄêµÄ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð ÖØµãÏîÄ¿ ÄÄЩ ѧ²¿ ÒѾ­´ð±çÁË£¿ +4 shxna 2025-07-06 7/350 2025-07-08 08:57 by sharkzh
[ÂÛÎÄͶ¸å] µÇ½ microchimica acta×ÜÊÇÌø×ªµ½research square 500+3 xuefangxuefang 2025-07-05 6/300 2025-07-07 09:02 by evan1002
[Óлú½»Á÷] ÓлúºÏ³ÉÇóÖú +4 Legend980 2025-07-05 7/350 2025-07-06 13:58 by czyzsu
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û