| 查看: 4023 | 回复: 75 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
Magnetic Materials - Fundamentals and Applications 2nd ed
|
||
|
Contents Acknowledgments page xiii I Basics 1 Review of basic magnetostatics 3 1.1 Magnetic field 4 1.1.1 Magnetic poles 4 1.1.2 Magnetic flux 6 1.1.3 Circulating currents 6 1.1.4 Ampère’s circuital law 7 1.1.5 Biot–Savart law 8 1.1.6 Field from a straight wire 8 1.2 Magnetic moment 10 1.2.1 Magnetic dipole 11 1.3 Definitions 11 Homework 12 2 Magnetization and magnetic materials 14 2.1 Magnetic induction and magnetization 14 2.2 Flux density 15 2.3 Susceptibility and permeability 16 2.4 Hysteresis loops 18 2.5 Definitions 19 2.6 Units and conversions 19 Homework 20 3 Atomic origins of magnetism 22 3.1 Solution of the Schrödinger equation for a free atom 22 3.1.1 What do the quantum numbers represent? 25 3.2 The normal Zeeman effect 27 vii viii Contents 3.3 Electron spin 30 3.4 Extension to many-electron atoms 31 3.4.1 Pauli exclusion principle 32 3.5 Spin–orbit coupling 32 3.5.1 Russell–Saunders coupling 32 3.5.2 Hund’s rules 34 3.5.3 jj coupling 35 3.5.4 The anomalous Zeeman effect 35 Homework 37 4 Diamagnetism 38 4.1 Observing the diamagnetic effect 38 4.2 Diamagnetic susceptibility 39 4.3 Diamagnetic substances 41 4.4 Uses of diamagnetic materials 42 4.5 Superconductivity 42 4.5.1 The Meissner effect 43 4.5.2 Critical field 44 4.5.3 Classification of superconductors 44 4.5.4 Superconducting materials 44 4.5.5 Applications for superconductors 46 Homework 46 5 Paramagnetism 48 5.1 Langevin theory of paramagnetism 49 5.2 The Curie–Weiss law 52 5.3 Quenching of orbital angular momentum 54 5.4 Pauli paramagnetism 55 5.4.1 Energy bands in solids 56 5.4.2 Free-electron theory of metals 58 5.4.3 Susceptibility of Pauli paramagnets 60 5.5 Paramagnetic oxygen 62 5.6 Uses of paramagnets 63 Homework 64 6 Interactions in ferromagnetic materials 65 6.1 Weiss molecular field theory 66 6.1.1 Spontaneous magnetization 66 6.1.2 Effect of temperature on magnetization 67 6.2 Origin of the Weiss molecular field 69 6.2.1 Quantum mechanics of the He atom 70 6.3 Collective-electron theory of ferromagnetism 73 6.3.1 The Slater–Pauling curve 76 Contents ix 6.4 Summary 76 Homework 78 7 Ferromagnetic domains 79 7.1 Observing domains 79 7.2 Why domains occur 81 7.2.1 Magnetostatic energy 81 7.2.2 Magnetocrystalline energy 82 7.2.3 Magnetostrictive energy 84 7.3 Domain walls 85 7.4 Magnetization and hysteresis 87 Homework 92 8 Antiferromagnetism 96 8.1 Neutron diffraction 97 8.2 Weiss theory of antiferromagnetism 101 8.2.1 Susceptibility above T N 102 8.2.2 Weiss theory at T N 103 8.2.3 Spontaneous magnetization below T N 103 8.2.4 Susceptibility below T N 103 8.3 What causes the negative molecular field? 107 8.4 Uses of antiferromagnets 110 Homework 112 9 Ferrimagnetism 113 9.1 Weiss theory of ferrimagnetism 114 9.1.1 Weiss theory above T C 115 9.1.2 Weiss theory below T C 117 9.2 Ferrites 120 9.2.1 The cubic ferrites 120 9.2.2 The hexagonal ferrites 124 9.3 The garnets 125 9.4 Half-metallic antiferromagnets 126 Homework 127 10 Summary of basics 130 10.1 Review of types of magnetic ordering 130 10.2 Review of physics determining types of magnetic ordering 131 II Magnetic phenomena 11 Anisotropy 135 11.1 Magnetocrystalline anisotropy 135 11.1.1 Origin of magnetocrystalline anisotropy 136 11.1.2 Symmetry of magnetocrystalline anisotropy 138 x Contents 11.2 Shape anisotropy 139 11.2.1 Demagnetizing field 139 11.3 Induced magnetic anisotropy 141 11.3.1 Magnetic annealing 141 11.3.2 Roll anisotropy 142 11.3.3 Explanation for induced magnetic anisotropy 142 11.3.4 Other ways of inducing magnetic anisotropy 143 Homework 144 12 Nanoparticles and thin films 145 12.1 Magnetic properties of small particles 145 12.1.1 Experimental evidence for single-domain particles 147 12.1.2 Magnetization mechanism 147 12.1.3 Superparamagnetism 148 12.2 Thin-film magnetism 152 12.2.1 Structure 152 12.2.2 Interfaces 153 12.2.3 Anisotropy 153 12.2.4 How thin is thin? 154 12.2.5 The limit of two-dimensionality 154 13 Magnetoresistance 156 13.1 Magnetoresistance in normal metals 157 13.2 Magnetoresistance in ferromagnetic metals 158 13.2.1 Anisotropic magnetoresistance 158 13.2.2 Magnetoresistance from spontaneous magnetization 159 13.2.3 Giant magnetoresistance 160 13.3 Colossal magnetoresistance 164 13.3.1 Superexchange and double exchange 164 Homework 168 14 Exchange bias 169 14.1 Problems with the simple cartoon mechanism 171 14.1.1 Ongoing research on exchange bias 172 14.2 Exchange anisotropy in technology 173 III Device applications and novel materials 15 Magnetic data storage 177 15.1 Introduction 177 15.2 Magnetic media 181 15.2.1 Materials used in magnetic media 181 15.2.2 The other components of magnetic hard disks 183 15.3 Write heads 183 Contents xi 15.4 Read heads 185 15.5 Future of magnetic data storage 186 16 Magneto-optics and magneto-optic recording 189 16.1 Magneto-optics basics 189 16.1.1 Kerr effect 189 16.1.2 Faraday effect 191 16.1.3 Physical origin of magneto-optic effects 191 16.2 Magneto-optic recording 193 16.2.1 Other types of optical storage, and the future of magneto-optic recording 196 17 Magnetic semiconductors and insulators 197 17.1 Exchange interactions in magnetic semiconductors and insulators 198 17.1.1 Direct exchange and superexchange 199 17.1.2 Carrier-mediated exchange 199 17.1.3 Bound magnetic polarons 200 17.2 II–VI diluted magnetic semiconductors – (Zn,Mn)Se 201 17.2.1 Enhanced Zeeman splitting 201 17.2.2 Persistent spin coherence 202 17.2.3 Spin-polarized transport 203 17.2.4 Other architectures 204 17.3 III–V diluted magnetic semiconductors – (Ga,Mn)As 204 17.3.1 Rare-earth–group-V compounds – ErAs 207 17.4 Oxide-based diluted magnetic semiconductors 208 17.5 Ferromagnetic insulators 210 17.5.1 Crystal-field and Jahn–Teller effects 210 17.5.2 YTiO 3 and SeCuO 3 211 17.5.3 BiMnO 3 213 17.5.4 Europium oxide 214 17.5.5 Double perovskites 215 17.6 Summary 215 18 Multiferroics 216 18.1 Comparison of ferromagnetism and other types of ferroic ordering 216 18.1.1 Ferroelectrics 216 18.1.2 Ferroelastics 219 18.1.3 Ferrotoroidics 220 18.2 Multiferroics that combine magnetism and ferroelectricity 221 18.2.1 The contra-indication between magnetism and ferroelectricity 222 xii Contents 18.2.2 Routes to combining magnetism and ferroelectricity 223 18.2.3 The magnetoelectric effect 225 18.3 Summary 228 Epilogue 229 Solutions to selected exercises 230 References 262 Index 270 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Magnetic_Materials_-_Fundamentals_and_Applications_2nd_ed_-_N._Spaldin_(Cambridge,_2011)_WW.pdf
2016-10-15 20:37:32, 1.9 M
» 猜你喜欢
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有6人回复
中科院杭州医学所招收博士生一名(生物分析化学、药物递送)
已经有4人回复
求个博导看看
已经有18人回复
自荐读博
已经有6人回复
青基代表作,AAAI之类的A会的special track在国内认可度高吗?还是归为workshop之流?
已经有3人回复
上海工程技术大学【激光智能制造】课题组招收硕士
已经有6人回复
上海工程技术大学张培磊教授团队招收博士生
已经有4人回复
临港实验室与上科大联培博士招生1名
已经有9人回复
写了一篇“相变储能技术在冷库中应用”的论文,论文内容以实验为主,投什么期刊合适?
已经有6人回复
75楼2019-06-14 16:15:00
简单回复
2016-10-15 23:47
回复
一般 顶一下,感谢分享!
2016-10-16 05:49
回复
五星好评 顶一下,感谢分享!
muxinjin4楼
2016-10-16 08:20
回复
五星好评 顶一下,感谢分享!
keda5楼
2016-10-16 14:18
回复
五星好评 顶一下,感谢分享!
hwlllfff6楼
2016-10-16 20:53
回复
五星好评 顶一下,感谢分享!
ha16687楼
2016-10-16 22:05
回复
五星好评 顶一下,感谢分享!
2016-10-17 01:18
回复
五星好评 顶一下,感谢分享!
Quan.9楼
2016-10-17 06:23
回复
五星好评 顶一下,感谢分享!
quantum99911楼
2016-10-17 07:53
回复
五星好评 顶一下,感谢分享!
happyfishs12楼
2016-10-17 07:56
回复
五星好评 顶一下,感谢分享!
Sdresearcher13楼
2016-10-17 09:02
回复
五星好评 顶一下,感谢分享!
在雨中14楼
2016-10-17 09:08
回复
五星好评 顶一下,感谢分享!







回复此楼