24小时热门版块排行榜    

CyRhmU.jpeg
查看: 2919  |  回复: 72
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

pkusiyuan

银虫 (正式写手)


[资源] Advanced Modern Physics... Theoretical Foundations

Contents
Preface
1. Introduction
vii
1
2. Quantum Mechanics (Revisited)
2.1 Linear Vector Spaces .
2.1.1 Three- Dimensional Vectors
2.1.2 n- Dimensions .
2.2 Hilbert Space .
2.2.1 Example .
2.2.2 Definition .
2.2.3 Relation to Linear Vector Space
2.2.4 Abstract State Vector
2.3 Linear Hermitian Operators ..
2.3.1 Eigenfunctions .....
2.3.2 Eigenstates of Position
2.4 Abstract Hilbert Space
2.4.1 Inner Product . . . . .
2.4.2 Completeness......
2.4.3 Linear Hermitian Operators
2.4.3.1 Eigenstates ....
2.4.3.2 Adjoint Operators
2.4.4 Schrodinger Equation . . . .
2.4.4.1 Stationary States ..
2.5 Measurements .
2.5.1 Coordinate Space
ix
9
9
9
10
11
11
12
13
13
14
15
16
18
18
19
19
20
20
20
23
23
23
x Advanced Modern Physics
2.5.2 Abstract Form . . . . . . . . . .
2.5.3 Reduction of the Wave Packet
2.5.4 Stern-Gerlach Experiment
2.6 Quantum Mechanics Postulates. . .
2.7 Many-Particle Hilbert Space ....
2.7.1 Simple Harmonic Oscillator .
2.7.2 Bosons .
2.7.3 Fermions
3. Angular Momentum
3.1 'franslations .
3.2 Rotations....... . . . . .
3.3 Angular Momentum Operator
3.4 Eigenvalue Spectrum. . . . . .
3.5 Coupling of Angular Momenta
3.6 Recoupling . . . . . . . . . .
3.7 Irreducible Tensor Operators
3.8 The Wigner-Eckart Theorem
3.9 Finite Rotations .
3.9.1 Properties .
3.9.2 Tensor Operators .
3.9.3 Wigner-Eckart Theorem (Completed)
3.10 Tensor Products
3.11 Vector Model
4. Scattering Theory
4.1 Interaction Picture.
4.2 Adiabatic Approach
4.3 U -Operator . . . . . .
4.4 (; -Operator for Finite Times
4.5 The S-Matrix. . . . . . . .
4.6 Time-Independent Analysis
4.7 Scattering State
4.8 'fransition Rate. . . . . . .
4.9 Unitarity .
4.10 Example: Potential Scattering
4.10.1 Green's Function (Propagator)
4.10.2 Scattering Wave Function ...
25
26
27
29
30
30
31
33
35
35
37
39
40
46
53
55
57
59
.... 61
63
64
65
66
69
69
70
72
76
77
79
83
86
89
90
90
92
Contents xi
4.10.3 T-matrix .... 93
4.10.4 Cross Section . 93
4.10.5 Unitarity .... 94
5. Lagrangian Field Theory 95
5.1 Particle Mechanics. · .... 96
5.1.1 Hamilton's Principle . . .... 96
5.1.2 Lagrange's Equations 97
5.1.3 Hamiltonian · .... 98
5.2 Continuum Mechanics (String-a Review) 101
5.2.1 Lagrangian Density 101
5.2.2 Hamilton's Principle . 102
5.2.3 Lagrange's Equation. . 103
5.2.4 Two-Vectors · ..... 103
5.2.5 Momentum Density 104
5.2.6 Hamiltonian Density. . 104
5.3 Quantization ......... 104
5.3.1 Particle Mechanics ... 104
5.3.2 Continuum Mechanics (String) 106
5.4 Relativistic Field Theory 108
5.4.1 Scalar Field. . . 109
5.4.2 Stress Tensor . . . 111
5.4.3 Dirac Field ..... 117
5.4.4 Noether's Theorem 120
5.4.4.1 Normal-Ordered Current 122
5.4.5 Electromagnetic Field . . . . . . 123
5.4.6 Interacting Fields (Dirac-Scalar) 123
6. Symmetries 125
6.1 Lorentz Invariance 125
6.2 Rotational Invariance 126
6.3 Internal Symmetries 127
6.3.1 Isospin-SU(2) 127
6.3.1.1 Isovector 127
6.3.1.2 Isospinor 131
6.3.1.3 Transformation Law 133
6.3.2 Lie Groups ...... 134
6.3.3 Sakata Model-SU (3) . . . . . 138
xii Advanced Modern Physics
6.3.3.1 Dirac 'friplet . . . . . . . . . . .
6.3.3.2 Scalar Octet .
6.3.3.3 Interacting Fields (Dirac-Scalar)
6.4 Phase Invariance . . . . . . . . . .
6.4.1 Global Phase Invariance .
6.4.2 Local Phase Invariance
6.5 Yang-Mills Theories
6.6 Chiral Symmetry. . . . . . . . .
6.6.1 a-Model .
6.6.2 Spontaneous Symmetry Breaking
6.7 Lorentz 'fransformations .
139
141
142
142
142
143
145
151
156
158
162
7. Feynman Rules
7.1 Wick's Theorem .
7.2 Example (Dirac-Scalar) .
7.2.1 Scattering Amplitudes.
7.2.2 Self-Energies ....
7.2.3 Vacuum Amplitude
7.3 Feynman Diagrams .
7.4 Feynman Rules .
7.5 Cancellation of Disconnected Diagrams
7.6 Mass Renormalization . . . . . . . . . .
8. Quantum Electrodynamics (QED)
8.1 Classical Theory
8.2 Hamiltonian ..
8.3 Quantization ..
8.4 Photon Propagator.
8.5 Second-Order Processes
8.5.1 Scattering Amplitudes .
8.5.2 Self-Energies ....
8.6 QED With Two Leptons
8.7 Cross Sections . . . . . . .
8.7.1 e- + p,-
~
e- + p,-
8.7.1.1 Scattering Amplitude
8.7.1.2 Cross Section . . . . .
8.7.1.3 'fraces .
8.7.1.4 Cross Section (Continued) .
163
164
171
172
175
176
177
180
182
185
187
187
188
189
191
196
196
198
200
200
200
201
201
205
206
Contents
8.7.1.5 Limiting Cases ..
8.7.1.6 M¢ller Scattering
872 ++ - ++- .. e e
~
J
.
L
J.L ••.•
8.7.2.1 Scattering Amplitude
8.7.2.2 Cross Section ..
8.7.2.3 Limiting Cases .
8.7.2.4 Colliding Beams
8.8 QED in External Field ....
8.8.1 Nuclear Coulomb Field
8.8.2 Bremsstrahlung ....
8.8.3 Pair Production . . . . .
8.9 Scattering Operator Si xt in Order e 3 ..
8.10 Feynman Rules for QED .
8.10.1 General Scattering Operator
8.10.2 Feynman Diagrams .
8.10.3 Feynman Rules .
8.10.3.1 Coordinate Space .
8.10.3.2 Momentum Space
xiii
208
209
210
210
211
214
214
214
216
217
218
219
221
221
222
223
223
223
9. Higher-Order Processes
9.1
9.2
9.3
9.4
9.5
Example-Scattering in External Field ....
9.1.1 Feynman Diagrams
9.1.2 First-Order.......
9.1.3 Vertex Insertion ...
9.1.4 Vacuum Polarization
9.1.5 Self-Energy Insertions
Ward's Identity. . . . .
Electron Self-Energy . .
9.3.1 General Form
9.3.2 Evaluation . .
9.3.3 Mass Renormalization .
Vertex .
9.4.1 General Form .
9.4.2 Ward's Identity
9.4.3 Evaluation ... .
9.4.4 The Constant L
9.4.5 The Infrared Problem .
9.4.6 Schwinger Moment. . .
External Lines and Wavefunction Renormalization
225
225
226
226
226
226
227
228
228
229
230
232
234
234
235
236
238
239
240
243
xiv
9.6
9.7
Advanced Modern Physics
9.5.1 Cancellation of Divergences.
Vacuum Polarization. .
9.6.1 Evaluation ..
9.6.2 General Form ....
9.6.3 Limiting Cases .
9.6.4 Insertion ....
9.6.5 Charge Renormalization. .
9.6.6 Charge Strength . . . .
Renormalization Theory . . .
9.7.1 Proper Self-Energies .
9.7.2 Proper Vertex .
9.7.3 Ward's Identity .
9.7.4 Ward's Vertex Construct
9.7.5 Finite Parts .
9.7.6 Proof of Renormalization
9.7.7 The Renormalization Group
247
247
248
249
250
250
252
254
255
255
256
257
259
260
262
264
10. Path Integrals
10.1 Non-Relativistic Quantum Mechanics with One Degree of
Freedom .
10.1.1 General Relations .
10.1.2 Infinitesimals . . . . . . . . . . . . . . . .
10.1.3 Thansition Amplitude and Path Integral .
10.1.4 Classical Limit .
10.1.5 Superposition .
10.1.6 Matrix Elements . . . . . . . . . . . .
10.1.7 Crucial Theorem of Abers and Lee .
10.1.8 Functional Derivative .
10.1.9 Generating Functional.
10.2 Many Degrees of Freedom ..
10.2.1 Gaussian Integrals ...
10.3 Field Theory . . . . . . . . . .
10.3.1 Fields as Coordinates
10.3.2 Measure. . . . . . . .
10.3.3 Generating Functional.
10.3.4 Convergence . . . . . .
10.3.4.1 Euclidicity Postulate.
10.3.4.2 Adiabatic Damping
10.4 Scalar Field . . . . . . . . . . . . . . . .
265
265
266
268
270
272
272
273
275
276
279
279
280
282
282
283
283
283
283
284
285
Contents xv
10.4.1 Generating Functional for Free Scalar Field. 285
10.4.1.1 Applications 287
10.4.2 Interactions. . . . . 289
10.5 Fermions . . . . . . . . . . . 290
10.5.1 Grassmann Algebra . . 290
10.5.2 Functional Derivative 291
10.5.3 Functional Integration. 291
10.5.4 Integrals . . 292
10.5.5 Basic Results. . . . . . . . . . 292
10.5.6 Generating Functional for Free Dirac Field 294
10.5.6.1 Applications ..... 296
10.5.7 Interactions (Dirac-Scalar) 297
10.6 Electromagnetic Field . . . . . . . 298
11. Canonical Transformations for Quantum Systems 299
11.1 Interacting Bose System . . . . . . . . . . 300
11.1.1 Pseudopotential . . . . . . . . . . 300
11.1.2 Special Role of the Ground State. . 301
11.1.3 Effective Hamiltonian . . . . 302
11.1.4 Bogoliubov Transformation . . 303
11.1.5 Discussion of Results 305
11.1.5.1 Excitation Spectrum . 305
11.1.5.2 Depletion . . . . . . . 306
11.1.5.3 Ground-State Energy 308
11.1.6 Superfiuid 4He .... 309
11.2 Superconductors . . . . . . . . . . . . 309
11.2.1 Cooper Pairs. . . . . . . . . . . 309
11.2.2 Bogoliubov- Valatin Transformation 310
11.2.2.1 Pairing . . . . . . . . . . . 310
11.2.2.2 Thermodynamic Potential. 311
11.2.2.3 Wick's Theorem . . . 312
11.2.2.4 Diagonalization of K o 314
11.2.2.5 Gap Equation .. 316
11.2.3 Discussion of Results 316
11.2.3.1 Particle Number . . . 316
11.2.3.2 Ground-State Thermodynamic Potential.. 317
11.2.3.3 Ground-State Energy 318
11.2.3.4 Excitation Spectrum . 318
11.2.3.5 Momentum Operator 319
xvi Advanced Modem Physics
11.2.3.6 Quasiparticle Spectrum . . . . . . .
11.2.3.7 Calculation of the Energy Gap
~
..
11.2.3.8 Quasiparticle Interactions . . . . .
12 . Problems
Appendix A Multipole Analysis of the Radiation Field
A.1 Vector Spherical Harmonics . .
A.2 Plane-Wave Expansion ..
A.3 'fransition Rate. . . . . . .
A.4 Arbitrary Photon Direction .
Appendix B Functions of a Complex Variable
B.1 Convergence .....
B.2 Analytic Functions . .
B.3 Integration ....
B.4 Cauchy's Theorem
B.5 Cauchy's Integral.
B.6 Taylor's Theorem
B.7 Laurent Series ..
B.8 Theory of Residues.
B.9 Zeros of an Analytic Function .
B.10 Analytic Continuation . .
B.10.1 Standard Method
B.10.2 Uniqueness .....
Appendix C Electromagnetic Field
C.1 Lagrangian Field Theory
C.2 Stress Tensor .
C.3 Free Fields .
C.4 Quantization .
C.5 Commutation Relations
C.6 Interaction With External Current
C.6.1 Hamiltonian
C.6.2 Quantization........
Appendix D Irreducible Representations of SU(n)
D.1 Young Tableaux and Young Operators ..
.... 319
320
322
323
369
370
373
375
379
383
383
383
384
385
385
387
387
387
389
389
390
391
393
394
395
395
397
399
401
402
404
407
409
Contents
D.2 Adjoint Representation .....
D.3 Dimension of the Representation
D.4 Outer Product . . . . . . .
D.5 SU(n-1) Content of SU(n) .
D.6 Some Examples .
D.6.1 Angular Momentum-SU(2)
D.6.2 Sakata Model-SU(3) ....
D.6.3 Giant Resonances-SU(4) ..
xvii
410
412
412
413
414
414
415
417
Appendix E Lorentz 'fransformations in Quantum Field Theory 419
E.1 Scalar Field .
E.1.1 States .
E.1.2 Lorentz 'fransformation
E.1.3 Generators .....
E.1.4 Commutation Rules ..
E.2 Dirac Field . . . . . . . . . . .
E.2.1 Lorentz 'fransformation
Appendix F Green's Functions and Other Singular Functions
F.! Commutator at Unequal Times ..
F.2 Green's Functions . . . . . . .
F.2.1 Boundary Conditions
F.3 Time-Ordered Products ....
F.3.1 Scalar Field. . . . . .
F. 3.2 Electromagnetic Field
F.3.3 Dirac Field .
F.3.4 Vector Field . . . . .
Appendix G Dimensional Regularization
420
420
422
423
426
427
427
429
429
434
437
439
439
440
440
442
443
G.1 Dirichlet Integral . 444
G.2 Basic Relation . . 445
G.3 Complex n-plane . 446
G.4 Algebra . . . . . . 447
G.5 Lorentz Metric . . 448
G.6 l'-Matrix Algebra. 449
G.7 Examples . . . . . . . . . . . . . . . 449
G.7.1 Convergent Momentum Integrals.. 450
G.7.2 Vacuum Tadpoles . . . . . . . . . . . . .. 450
xviii Advanced Modern Physics
Go703 Vacuum Polarization 0 0 0 0 0 0 0 0 0 0 0 0
Appendix H Path Integrals and the Electromagnetic Field
HoI Faddeev-Popov Identity
Ho2 Application 0 0 0 0 0 0 0
Ho3 Generating Functional 0
Ho4 Ghosts 0 0 0 0 0 0 0
Ho5 Photon Propagator 0 0 0
Appendix I Metric Conversion
Bibliography
Index
..... 450
453
453
455
457
458
458
461
463
467
回复此楼

» 本帖附件资源列表

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lusunnycn

新虫 (初入文坛)


真的很不错,谢谢共享
53楼2016-12-26 09:14:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 73 个回答
简单回复
applaq2楼
2016-09-19 22:42   回复  
五星好评  顶一下,感谢分享!
xmc1411183楼
2016-09-20 05:51   回复  
五星好评  顶一下,感谢分享!
zhaozilai4楼
2016-09-20 06:18   回复  
五星好评  顶一下,感谢分享!
2016-09-20 18:22   回复  
五星好评  顶一下,感谢分享!
askuyue6楼
2016-09-20 18:40   回复  
五星好评  顶一下,感谢分享!
hong_bin7楼
2016-09-20 19:25   回复  
五星好评  顶一下,感谢分享!
2016-09-20 21:44   回复  
五星好评  顶一下,感谢分享!
keda9楼
2016-09-20 22:30   回复  
五星好评  顶一下,感谢分享!
lishucai10楼
2016-09-20 23:06   回复  
五星好评  顶一下,感谢分享!
2016-09-21 00:27   回复  
五星好评  顶一下,感谢分享!
2016-09-21 01:17   回复  
五星好评  顶一下,感谢分享!
zbxue13楼
2016-09-21 02:12   回复  
五星好评  顶一下,感谢分享!
ha166814楼
2016-09-21 02:31   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见