| 查看: 921 | 回复: 11 | |||
| 【奖励】 本帖被评价11次,作者pkusiyuan增加金币 8.8 个 | |||
[资源]
From Nucleons to Nucleus - Concepts of Microscopic Nuclear Theory
|
|||
|
Contents Part I Particles and Holes 1 Angular Momentum Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Clebsch–Gordan Coefficients and 3j Symbols. . . . . . . . . . . . . . . . 3 1.2 More on Clebsch–Gordan Coefficients; 3j Symbols . . . . . . . . . . . 7 1.2.1 Clebsch–Gordan Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 More Symmetry: 3j Symbols. . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Relations for 3j Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 The 6j Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Symmetry Properties of the 6j Symbol . . . . . . . . . . . . . . . 13 1.3.2 Relations for 6j Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.3 Explicit Expressions for 6j Symbols. . . . . . . . . . . . . . . . . . 14 1.4 The 9j Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.1 Symmetry Properties of the 9j Symbol . . . . . . . . . . . . . . . 17 1.4.2 Relations for 9j Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Tensor Operators and the Wigner–Eckart Theorem . . . . . . . . 23 2.1 Spherical Tensor Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Rotations of the Coordinate Axes . . . . . . . . . . . . . . . . . . . 23 2.1.2 Wigner D Functions and Spherical Tensors . . . . . . . . . . . 25 2.1.3 Contravariant and Covariant Components of Spherical Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 The Wigner–Eckart Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Immediate Consequences of the Wigner–Eckart Theorem 29 2.2.2 Pauli Spin Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Matrix Elements of Coupled Tensor Operators . . . . . . . . . . . . . . 32 2.3.1 Theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 XII Contents 3 The Nuclear Mean Field and Many-Nucleon Configurations 39 3.1 The Nuclear Mean Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 The Mean-Field Approximation . . . . . . . . . . . . . . . . . . . . . 40 3.1.2 Phenomenological Potentials . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.3 The Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Woods–Saxon Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Harmonic Oscillator Wave Functions . . . . . . . . . . . . . . . . . 48 3.2.2 Diagonalization of the Woods–Saxon Hamiltonian . . . . . 50 3.3 Many-Nucleon Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Occupation Number Representation . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Occupation Number Representation of Many-Nucleon States . . 63 4.1.1 Fock Space: Particle Creation and Annihilation . . . . . . . 64 4.1.2 Further Properties of Creation and Annihilation Operators. . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Operators and Their Matrix Elements. . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Occupation Number Representation of One-Body Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 Matrix Elements of One-Body Operators . . . . . . . . . . . . . 68 4.2.3 Occupation Number Representation of Two-Body Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Evaluation of Many-Nucleon Matrix Elements. . . . . . . . . . . . . . . 70 4.3.1 Normal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.3 Wick’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 Particle–Hole Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.1 Properties of Particle and Hole Operators . . . . . . . . . . . . 75 4.4.2 Particle–Hole Representation of Operators and Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Hartree–Fock Equation from Wick’s Theorem . . . . . . . . . . . . . . . 78 4.5.1 Derivation of the Hartree–Fock Equation . . . . . . . . . . . . . 78 4.5.2 Residual Interaction; Ground-State Energy . . . . . . . . . . . 80 4.6 Hartree–Fock Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . 81 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 The Mean-Field Shell Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1 Valence Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 One-Particle and One-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.1 Examples of One-Particle Nuclei . . . . . . . . . . . . . . . . . . . . 89 5.2.2 Examples of One-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Two-Particle and Two-Hole Nuclei. . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.1 Examples of Two-Particle Nuclei . . . . . . . . . . . . . . . . . . . . 93 5.3.2 Examples of Two-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Particle–Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Contents XIII 5.5 Isospin Representation of Few-Nucleon Systems . . . . . . . . . . . . . 105 5.5.1 General Isospin Formalism. . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.2 Tensor Operators in Isospin Representation . . . . . . . . . . . 107 5.5.3 Isospin Representation of Two-Particle and Two-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.5.4 Isospin Representation of Particle–Hole Nuclei . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 Electromagnetic Multipole Moments and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.1 General Properties of Electromagnetic Observables . . . . . . . . . . 117 6.1.1 Transition Probability and Half-Life . . . . . . . . . . . . . . . . . 118 6.1.2 Selection Rules for Electromagnetic Transitions . . . . . . . 121 6.1.3 Single-Particle Matrix Elements of the Multipole Operators . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.1.4 Properties of the Radial Integrals. . . . . . . . . . . . . . . . . . . . 124 6.1.5 Tables of Numerical Values of Single-Particle Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.1.6 Electromagnetic Multipole Moments . . . . . . . . . . . . . . . . . 128 6.1.7 Weisskopf Units and Transition Rates . . . . . . . . . . . . . . . . 130 6.2 Electromagnetic Transitions in One-Particle and One-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1 Reduced Transition Probabilities . . . . . . . . . . . . . . . . . . . . 132 6.2.2 Example: Transitions in One-Hole Nuclei 15 N and 15 O . 134 6.2.3 Magnetic Dipole Moments: Schmidt Lines . . . . . . . . . . . . 136 6.3 Electromagnetic Transitions in Two-Particle and Two-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.1 Example: Transitions in Two-Particle Nuclei 18 O and 18 Ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.4 Electromagnetic Transitions in Particle–Hole Nuclei. . . . . . . . . . 140 6.4.1 Transitions Involving Charge-Conserving Particle– Hole Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.4.2 Example: Doubly Magic Nucleus 16 O . . . . . . . . . . . . . . . . 143 6.4.3 Transitions Between Charge-Changing Particle–Hole Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.4.4 Example: Odd–Odd Nucleus 16 N . . . . . . . . . . . . . . . . . . . . 147 6.5 Isoscalar and Isovector Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.1 Isospin Decomposition of the Electromagnetic Decay Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.2 Example: 3 − States in 16 O . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.5.3 Isospin Selection Rules in Two-Particle and Two-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 XIV Contents 7 Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.1 General Properties of Nuclear Beta Decay . . . . . . . . . . . . . . . . . . 157 7.2 Allowed Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.2.1 Half-Lives, Reduced Transition Probabilities and ft Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.2 Fermi and Gamow–Teller Matrix Elements . . . . . . . . . . . 165 7.2.3 Phase-Space Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.2.4 Combined β + and Electron Capture Decays . . . . . . . . . . 168 7.2.5 Decay Q Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.2.6 Partial and Total Decay Half-Lives; Decay Branchings . 169 7.2.7 Classification of Beta Decays. . . . . . . . . . . . . . . . . . . . . . . . 170 7.3 Beta-Decay Transitions in One-Particle and One-Hole Nuclei. . 171 7.3.1 Matrix Elements and Reduced Transition Probabilities . 171 7.3.2 Application to Beta Decay of 15 O; Other Examples . . . . 172 7.4 Beta-Decay Transitions in Particle–Hole Nuclei. . . . . . . . . . . . . . 174 7.4.1 Beta Decay to and from the Even–Even Ground State . 174 7.4.2 Application to Beta Decay of 56 Ni . . . . . . . . . . . . . . . . . . . 175 7.4.3 Beta-Decay Transitions Between Two Particle–Hole States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.4.4 Application to Beta Decay of 16 N . . . . . . . . . . . . . . . . . . . 178 7.5 Beta-Decay Transitions in Two-Particle and Two-Hole Nuclei . 180 7.5.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.5.2 Application to Beta Decay of 6 He . . . . . . . . . . . . . . . . . . . 183 7.5.3 Application to the Beta-Decay Chain 18 Ne → 18 F → 18 O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.5.4 Further Examples: Beta Decay in A = 42 and A = 54 Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.6 Forbidden Unique Beta Decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.6.1 General Aspects of First-Forbidden Beta Decay . . . . . . . 188 7.6.2 First-Forbidden Unique Beta Decay. . . . . . . . . . . . . . . . . . 190 7.6.3 Application to First-Forbidden Unique Beta Decay of 16 N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.6.4 Higher-Forbidden Unique Beta Decay . . . . . . . . . . . . . . . . 193 7.6.5 Application to Third-Forbidden Unique Beta Decay of 40 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.6.6 Forbidden Unique Beta Decay in Few-Particle and Few-Hole Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.6.7 Forbidden Non-Unique Beta Decays . . . . . . . . . . . . . . . . . 201 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8 Nuclear Two-Body Interaction and Configuration Mixing. . 205 8.1 General Properties of the Nuclear Two-Body Interaction . . . . . 205 8.1.1 Coupled Two-Body Interaction Matrix Elements . . . . . . 206 8.1.2 Relations for Coupled Two-Body Matrix Elements. . . . . 209 8.1.3 Different Types of Two-Body Interaction . . . . . . . . . . . . . 210 Contents XV 8.1.4 Central Forces with Spin and Isospin Dependendence . . 212 8.2 Separable Interactions; the Surface Delta Interaction . . . . . . . . . 213 8.2.1 Multipole Decomposition of a General Separable Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 8.2.2 Two-Body Matrix Elements of the Surface Delta Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.3 Configuration Mixing in Two-Particle Nuclei . . . . . . . . . . . . . . . . 219 8.3.1 Matrix Representation of an Eigenvalue Problem . . . . . . 219 8.3.2 Solving the Eigenenergies of a Two-by-Two Problem . . . 221 8.3.3 Matrix Elements of the Hamiltonian in the Two-Nucleon Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.3.4 Solving the Eigenvalue Problem for a Two-Particle Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.3.5 Application to A = 6 Nuclei . . . . . . . . . . . . . . . . . . . . . . . . 225 8.3.6 Application to A = 18 Nuclei . . . . . . . . . . . . . . . . . . . . . . . 228 8.4 Configuration Mixing in Two-Hole Nuclei. . . . . . . . . . . . . . . . . . . 231 8.4.1 Diagonalization of the Residual Interaction in a Two-Hole Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.4.2 Application to A = 14 Nuclei . . . . . . . . . . . . . . . . . . . . . . . 233 8.4.3 Application to A = 38 Nuclei . . . . . . . . . . . . . . . . . . . . . . . 234 8.5 Electromagnetic and Beta-Decay Transitions in Two-Particle. . 236 8.5.1 Transition Amplitudes With Configuration Mixing. . . . . 236 8.5.2 Application to Beta Decay of 6 He . . . . . . . . . . . . . . . . . . . 237 8.5.3 Application to E2 Decays in 18 O and 18 Ne. . . . . . . . . . . . 239 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 9 Particle–Hole Excitations and the Tamm–Dancoff Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.1 The Tamm–Dancoff Approximation . . . . . . . . . . . . . . . . . . . . . . . . 243 9.1.1 Justification of the TDA: Brillouin’s Theorem . . . . . . . . . 243 9.1.2 Derivation of Explicit Expressions for the TDA Matrix . 246 9.1.3 Tabulated Values of Particle–Hole Matrix Elements . . . . 248 9.1.4 TDA as an Eigenvalue Problem; Properties of the Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 9.2 TDA for General Separable Forces . . . . . . . . . . . . . . . . . . . . . . . . . 253 9.2.1 Schematic Model; Dispersion Equation . . . . . . . . . . . . . . . 253 9.2.2 The Schematic Model for T = 0 and T = 1 . . . . . . . . . . . 256 9.2.3 The Schematic Model with the Surface Delta Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 9.2.4 Application to 1 − Excitations in 4 He . . . . . . . . . . . . . . . . 258 9.3 Excitation Spectra of Doubly Magic Nuclei . . . . . . . . . . . . . . . . . 260 9.3.1 Block Decomposition of the TDA Matrix . . . . . . . . . . . . . 260 9.3.2 Application to 1 − States in 4 He . . . . . . . . . . . . . . . . . . . . . 260 9.3.3 Application to Excited States in 16 O . . . . . . . . . . . . . . . . . 262 9.3.4 Further Examples: 40 Ca and 48 Ca . . . . . . . . . . . . . . . . . . . 263 XVI Contents 9.4 Electromagnetic Transitions in Doubly Magic Nuclei . . . . . . . . . 265 9.4.1 Transitions to the Particle–Hole Ground State . . . . . . . . 266 9.4.2 Non-Energy-Weighted Sum Rule . . . . . . . . . . . . . . . . . . . . 267 9.4.3 Application to Octupole Transitions in 16 O . . . . . . . . . . . 268 9.4.4 Collective Transitions in the TDA . . . . . . . . . . . . . . . . . . . 271 9.4.5 Application to Octupole Transitions in 40 Ca . . . . . . . . . . 272 9.4.6 E1 Transitions: Isospin Breaking in the Nuclear Mean Field . . . . . . . . . . . . . . . . . . . . . . . . . . 274 9.4.7 Transitions Between Two TDA Excitations . . . . . . . . . . . 277 9.4.8 Application to the 5 − 1 → 3 − 1 Transition in 40 Ca. . . . . . . . 277 9.5 Electric Transitions on the Schematic Model . . . . . . . . . . . . . . . . 278 9.5.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 9.5.2 Application to Electric Dipole Transitions in 4 He . . . . . . 280 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 10 Charge-Changing Particle–Hole Excitations and the pnTDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 10.1 The Proton–Neutron Tamm–Dancoff Approximation . . . . . . . . . 287 10.1.1 Structure of the pnTDA Matrix . . . . . . . . . . . . . . . . . . . . . 287 10.1.2 Application to 4 1 H 3 and 4 3 Li 1 . . . . . . . . . . . . . . . . . . . . . . . . 289 10.1.3 Further Examples: States of 16 7 N 9 and 40 19 K 21 . . . . . . . . . . 290 10.2 Electromagnetic Transitions in the pnTDA . . . . . . . . . . . . . . . . . 294 10.2.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 10.2.2 Application to the E2 Transition 0 − 1 → 2 − gs in 16 7 N 9 . . . . 294 10.3 Beta-Decay Transitions in the pnTDA . . . . . . . . . . . . . . . . . . . . . 296 10.3.1 Transitions to the Particle–Hole Vacuum . . . . . . . . . . . . . 296 10.3.2 First-Forbidden Unique Beta Decay of 16 7 N 9 . . . . . . . . . . . 297 10.3.3 Transitions between Particle–Hole States . . . . . . . . . . . . . 298 10.3.4 Allowed Beta Decay of 16 7 N 9 to Excited States in 16 8 O 8 . 299 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 11 The Random-Phase Approximation . . . . . . . . . . . . . . . . . . . . . . . . 305 11.1 The Equations-of-Motion Method . . . . . . . . . . . . . . . . . . . . . . . . . 305 11.1.1 Derivation of the Equations of Motion . . . . . . . . . . . . . . . 306 11.1.2 Derivation of the Hartree–Fock Equations by the EOM. 310 11.2 Sophisticated Particle–Hole Theories: The RPA . . . . . . . . . . . . . 312 11.2.1 Derivation of the RPA Equations by the EOM . . . . . . . . 312 11.2.2 Explicit Form of the Correlation Matrix . . . . . . . . . . . . . . 315 11.2.3 Numerical Tables of Correlation Matrix Elements . . . . . 317 11.3 Properties of the RPA Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 11.3.1 RPA Energies and Amplitudes . . . . . . . . . . . . . . . . . . . . . . 318 11.3.2 The RPA Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 11.3.3 RPA One-Particle Densities. . . . . . . . . . . . . . . . . . . . . . . . . 324 11.4 RPA Solutions of the Schematic Separable Model . . . . . . . . . . . . 327 11.4.1 The RPA Dispersion Equation . . . . . . . . . . . . . . . . . . . . . . 327 Contents XVII 11.4.2 Application to 1 − Excitations in 4 He . . . . . . . . . . . . . . . . 329 11.4.3 The Degenerate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 11.5 RPA Description of Doubly Magic Nuclei . . . . . . . . . . . . . . . . . . . 332 11.5.1 Examples of the RPA Matrices . . . . . . . . . . . . . . . . . . . . . . 332 11.5.2 Diagonalization of the RPA Supermatrix by Similarity Transformations. . . . . . . . . . . . . . . . . . . . . . . 335 11.5.3 Application to 1 − Excitations in 4 He Carried Through . 337 11.5.4 The 1 − Excitations of 4 He Revisited . . . . . . . . . . . . . . . . . 340 11.5.5 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 11.6 Electromagnetic Transitions in the RPA Framework . . . . . . . . . 344 11.6.1 Transitions to the RPA Ground State . . . . . . . . . . . . . . . . 344 11.6.2 Extreme Collective Model . . . . . . . . . . . . . . . . . . . . . . . . . . 346 11.6.3 Octupole Decay in 16 O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 11.6.4 The Energy-Weighted Sum Rule. . . . . . . . . . . . . . . . . . . . . 349 11.6.5 Sum Rule for the Octupole Transitions in 16 O. . . . . . . . . 352 11.6.6 Electric Transitions to the RPA Ground State on the Schematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 11.6.7 Electric Dipole Transitions in 4 He on the Schematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 11.6.8 The Degenerate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 11.6.9 Electromagnetic Transitions Between Two RPA Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 11.6.10The E2 Transition 5 − 1 → 3 − 1 in 40 Ca . . . . . . . . . . . . . . . . . 359 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Part II Quasiparticles 12 Nucleon Pairing and Seniority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 12.1 Evidence of Nucleon Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 12.2 The Pure Pairing Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 12.3 Two-Particle Spectrum of the Pure Pairing Force . . . . . . . . . . . . 374 12.4 Seniority Model of the Pure Pairing Force . . . . . . . . . . . . . . . . . . 376 12.4.1 Derivation of the Seniority-Zero Spectrum . . . . . . . . . . . . 376 12.4.2 Spectra of Seniority-One and Seniority-Two States . . . . 377 12.4.3 States of Higher Seniority . . . . . . . . . . . . . . . . . . . . . . . . . . 379 12.4.4 Application of the Seniority Model to 0f 7/2 -Shell Nuclei 380 12.5 The Two-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 12.5.1 The Pair Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 12.5.2 Matrix Elements of the Pairing Hamiltonian . . . . . . . . . . 383 12.5.3 Application to a Two-Particle System . . . . . . . . . . . . . . . . 386 12.6 Two Particles in a Valence Space of Many j Shells . . . . . . . . . . . 387 12.6.1 Dispersion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 12.6.2 The Three-Level Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 XVIII Contents 13 BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 13.1 BCS Quasiparticles and Their Vacuum . . . . . . . . . . . . . . . . . . . . . 391 13.1.1 The BCS Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 13.1.2 BCS Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 13.2 Occupation Number Representation for BCS Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 13.2.1 Contraction Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 13.2.2 Quasiparticle Representation of the Nuclear Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 13.3 Derivation of the BCS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 398 13.3.1 BCS as a Constrained Variational Problem . . . . . . . . . . . 398 13.3.2 The Gap Equation and the Quasiparticle Mean Field . . 400 13.4 Properties of the BCS Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 13.4.1 Physical Meaning of the Basic Parameters . . . . . . . . . . . . 403 13.4.2 Particle Number and Its Fluctuations . . . . . . . . . . . . . . . . 404 13.4.3 Odd–Even Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 13.5 Solution of the BCS Equations for Simple Models . . . . . . . . . . . 406 13.5.1 Single j Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 13.5.2 The Lipkin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 13.5.3 Example: The Lipkin Model for Two j = 7 2 Shells . . . . . 411 13.5.4 The Two-Level Model for Two j = 7 2 Shells . . . . . . . . . . . 412 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 14 Quasiparticle Mean Field: BCS and Beyond . . . . . . . . . . . . . . . 417 14.1 Numerical Solution of the BCS Equations . . . . . . . . . . . . . . . . . . 417 14.1.1 Iterative Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . 418 14.1.2 Application to Nuclei in the d-s and f-p-0g 9/2 Shells . . . 420 14.2 Lipkin–Nogami BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 14.2.1 The Lipkin–Nogami Model Hamiltonian . . . . . . . . . . . . . . 430 14.2.2 Derivation of the Lipkin–Nogami BCS Equations . . . . . . 433 14.3 Lipkin–Nogami BCS Theory in Simple Models . . . . . . . . . . . . . . 436 14.3.1 Single j Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 14.3.2 The Lipkin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 14.3.3 Example: The j = 7 2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . 441 14.4 The Two-Level Model for j = j ? = 7 2 . . . . . . . . . . . . . . . . . . . . . . . 443 14.5 Application of Lipkin–Nogami Theory to Realistic Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 15 Transitions in the Quasiparticle Picture . . . . . . . . . . . . . . . . . . . 449 15.1 Quasiparticle Representation of a One-Body Transition Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 15.2 Transition Densities for Few-Quasiparticle Systems . . . . . . . . . . 450 15.2.1 Transitions Between One-Quasiparticle States . . . . . . . . . 450 Contents XIX 15.2.2 Transitions Between a Two-Quasiparticle State and the BCS Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 15.2.3 Transitions Between Two-Quasiparticle States . . . . . . . . 451 15.3 Transitions in Odd-A Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 15.3.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 15.3.2 Beta and Gamma Decays in the A = 25 Chain of Isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 15.3.3 Beta Decays in the A = 63 Chain of Isobars . . . . . . . . . . 457 15.4 Transitions Between a Two-Quasiparticle State and the BCS Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 15.4.1 Formalism for Transition Amplitudes . . . . . . . . . . . . . . . . 459 15.4.2 Beta and Gamma Decays in the A = 30 Chain of Isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 15.5 Transitions Between Two-Quasiparticle States. . . . . . . . . . . . . . . 467 15.5.1 Electromagnetic Transitions . . . . . . . . . . . . . . . . . . . . . . . . 467 15.5.2 Beta-Decay Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 15.5.3 Beta Decay of 30 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 15.5.4 Magnetic Dipole Decay in 30 P . . . . . . . . . . . . . . . . . . . . . . 473 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 16 Mixing of Two-Quasiparticle Configurations . . . . . . . . . . . . . . . 479 16.1 Quasiparticle Representation of the Residual Interaction. . . . . . 479 16.2 Derivation of the Quasiparticle-TDA Equation . . . . . . . . . . . . . . 484 16.3 General Properties of QTDA Solutions . . . . . . . . . . . . . . . . . . . . . 490 16.3.1 Orthogonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 16.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 16.4 Excitation Spectra of Open-Shell Even–Even Nuclei. . . . . . . . . . 491 16.4.1 Explicit Form of the QTDA Matrix . . . . . . . . . . . . . . . . . . 492 16.4.2 Excitation Energies of 2 + States in 24 Mg . . . . . . . . . . . . . 493 16.4.3 Pairing Strength Parameters from Empirical Pairing Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 16.4.4 Excitation Spectrum of 24 12 Mg 12 . . . . . . . . . . . . . . . . . . . . . . 501 16.4.5 Excitation Spectra of the Mirror Nuclei 30 14 Si 16 and 30 16 S 14 502 16.4.6 Excitation Spectrum of 66 Zn . . . . . . . . . . . . . . . . . . . . . . . . 503 16.5 Electromagnetic Transitions to the Ground State . . . . . . . . . . . . 506 16.5.1 Decay Amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 16.5.2 E2 Decay of the Lowest 2 + State in 24 Mg . . . . . . . . . . . . 507 16.5.3 Collective States and Electric Transitions. . . . . . . . . . . . . 509 16.6 QTDA Sum Rule for Electromagnetic Transitions . . . . . . . . . . . 513 16.6.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 16.6.2 Examples of the NEWSR in the 0d-1s and 0f-1p-0g 9/2 Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 16.7 Transitions Between QTDA Excited States . . . . . . . . . . . . . . . . . 515 16.7.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 16.7.2 Example: The 0 + 1 → 2 + 1 Transition in 24 Mg . . . . . . . . . . . 516 XX Contents Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 17 Two-Quasiparticle Mixing in Odd–Odd Nuclei . . . . . . . . . . . . . 523 17.1 The Proton–Neutron QTDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 17.1.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 17.1.2 Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 17.2 Excitation Spectra of Open-Shell Odd–Odd Nuclei . . . . . . . . . . . 525 17.2.1 1 + States in the Mirror Nuclei 24 Na and 24 Al . . . . . . . . . 526 17.2.2 Energy Spectra in the d-s and f-p-0g 9/2 Shells. . . . . . . . . 527 17.2.3 Average Particle Number in the pnQTDA . . . . . . . . . . . . 530 17.3 Electromagnetic Transitions in the pnQTDA . . . . . . . . . . . . . . . . 533 17.3.1 Decay of the 2 + 1 State in 24 Na . . . . . . . . . . . . . . . . . . . . . . 534 17.4 Beta-Decay Transitions in the pnQTDA . . . . . . . . . . . . . . . . . . . . 537 17.4.1 Transitions to and from an Even–Even Ground State . . 537 17.4.2 Gamow–Teller Beta Decay of 30 S . . . . . . . . . . . . . . . . . . . . 538 17.4.3 The Ikeda Sum Rule and the pnQTDA. . . . . . . . . . . . . . . 541 17.4.4 Examples of the Ikeda Sum Rule . . . . . . . . . . . . . . . . . . . . 545 17.4.5 Gamow–Teller Giant Resonance . . . . . . . . . . . . . . . . . . . . . 548 17.4.6 Beta-Decay Transitions Between a QTDA and a pnQTDA State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 17.4.7 Gamow–Teller Beta Decay of 30 P. . . . . . . . . . . . . . . . . . . . 550 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 18 Two-Quasiparticle Mixing by the QRPA . . . . . . . . . . . . . . . . . . . 557 18.1 The QRPA Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 18.1.1 Derivation of the QRPA Equations by the EOM. . . . . . . 558 18.1.2 Explicit Form of the Correlation Matrix . . . . . . . . . . . . . . 559 18.2 General Properties of QRPA Solutions . . . . . . . . . . . . . . . . . . . . . 562 18.2.1 QRPA Energies and Wave Functions . . . . . . . . . . . . . . . . . 563 18.2.2 The QRPA Ground State and Transition Densities . . . . 567 18.3 QRPA Description of Open-Shell Even–Even Nuclei. . . . . . . . . . 569 18.3.1 Structure of the Correlation Matrix . . . . . . . . . . . . . . . . . . 569 18.3.2 Excitation Energies of 2 + States in 24 Mg . . . . . . . . . . . . . 570 18.3.3 Further Examples in the 0d-1s Shell . . . . . . . . . . . . . . . . . 572 18.3.4 Spurious Contributions to 1 − States . . . . . . . . . . . . . . . . . 573 18.4 Electromagnetic Transitions in the QRPA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 18.4.1 Transitions to the QRPA Ground State . . . . . . . . . . . . . . 575 18.4.2 E2 Decays in the 0d-1s and 0f-1p-0g 9/2 Shells . . . . . . . . . 577 18.4.3 Energy-Weighted Sum Rule of the QRPA. . . . . . . . . . . . . 579 18.4.4 Electric Quadrupole Sum Rule in 24 Mg . . . . . . . . . . . . . . 580 18.4.5 Electromagnetic Transitions Between Two QRPA Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 18.4.6 Electric Quadrupole Transition 4 + 1 → 2 + 1 in 24 Mg. . . . . . 584 18.4.7 Collective Vibrations and Rotations . . . . . . . . . . . . . . . . . 587 Contents XXI 18.5 Collective Vibrational Two-Phonon States . . . . . . . . . . . . . . . . . . 587 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 19 Proton–Neutron QRPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19.1 The pnQRPA Equation and its Basic Properties. . . . . . . . . . . . . 595 19.1.1 The pnQRPA Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19.1.2 Basic Properties of the Solutions of the pnQRPA Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 19.2 Description of Open-Shell Odd–Odd Nuclei by the pnQRPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 19.2.1 Low-Lying 1 + States in 24 Na and 24 Al . . . . . . . . . . . . . . . 599 19.2.2 Other Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 19.3 Average Particle Number in the pnQRPA . . . . . . . . . . . . . . . . . . 604 19.4 Electromagnetic Transitions in the pnQRPA . . . . . . . . . . . . . . . . 605 19.4.1 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 19.4.2 Decay of the 2 + 1 State in 24 Na . . . . . . . . . . . . . . . . . . . . . . 606 19.5 Beta-Decay Transitions in the pnQRPA Framework . . . . . . . . . . 608 19.5.1 Transitions Involving the Even–Even Ground State . . . . 608 19.5.2 Gamow–Teller Decay of the 1 + 1 Isomer in 24 Al . . . . . . . . 610 19.6 The Ikeda Sum Rule for the pnQRPA . . . . . . . . . . . . . . . . . . . . . . 612 19.6.1 Derivation of the Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . 612 19.6.2 Examples of the Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . 613 19.7 Beta-Decay Transitions Between a QRPA and a pnQRPA State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 19.7.1 Derivation of the Transition Amplitude . . . . . . . . . . . . . . 616 19.7.2 The Gamow–Teller Decay 24 Al(1 + 1 ) → 24 Mg(2 + 1 ) . . . . . . 618 19.7.3 First-Forbidden Unique Beta Decay in the 0f-1p-0g 9/2 Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 19.7.4 Empirical Particle–Hole and Particle–Particle Forces . . . 624 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Springer_-_From_Nucleons_to_Nucleus_-_Concepts_of_Microscopic_Nuclear_Theory_-_2007.pdf
2016-09-13 19:19:12, 4.73 M
» 猜你喜欢
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
孩子确诊有中度注意力缺陷
已经有6人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
简单回复
最后的圣光2楼
2016-09-14 07:15
回复
五星好评 顶一下,感谢分享!
wweig3楼
2016-09-15 07:25
回复
五星好评 顶一下,感谢分享!
2016-09-18 14:47
回复
五星好评 顶一下,感谢分享!
2016-09-20 18:36
回复
五星好评 顶一下,感谢分享!
甲先生6楼
2016-09-26 20:22
回复
五星好评 顶一下,感谢分享!
2019-11-01 05:22
回复
五星好评 顶一下,感谢分享!
2019-11-02 05:30
回复
五星好评 顶一下,感谢分享!
shchshch9楼
2019-11-02 06:55
回复
五星好评 顶一下,感谢分享!
mbchen10楼
2019-11-02 07:29
回复
五星好评 顶一下,感谢分享!
diliyf11楼
2020-01-28 11:24
回复
五星好评 顶一下,感谢分享!
ljb19721112楼
2020-01-28 17:04
回复
五星好评 顶一下,感谢分享! 发自小木虫Android客户端













回复此楼