| 查看: 2054 | 回复: 28 | ||||
| 【奖励】 本帖被评价26次,作者pkusiyuan增加金币 20.8 个 | ||||
[资源]
Spatial Statistics and Spatio-Temporal Data
|
||||
|
Contents Preface xi 1 Introduction 1 1.1 Stationarity 4 1.2 The effect of correlation in estimation and prediction 5 1.2.1 Estimation 5 1.2.2 Prediction 12 1.3 Texas tidal data 14 2 Geostatistics 21 2.1 A model for optimal prediction and error assessment 23 2.2 Optimal prediction (kriging) 25 2.2.1 An example: phosphorus prediction 28 2.2.2 An example in the power family of variogram functions 32 2.3 Prediction intervals 34 2.3.1 Predictions and prediction intervals for lognormal observations 35 2.4 Universal kriging 38 2.4.1 Optimal prediction in universal kriging 39 2.5 The intuition behind kriging 40 2.5.1 An example: the kriging weights in the phosphorus data 41 3 Variogram and covariance models and estimation 45 3.1 Empirical estimation of the variogram or covariance function 45 3.1.1 Robust estimation 46 3.1.2 Kernel smoothing 47 3.2 On the necessity of parametric variogram and covariance models 47 vi CONTENTS 3.3 Covariance and variogram models 48 3.3.1 Spectral methods and the Matérn covariance model 51 3.4 Convolution methods and extensions 55 3.4.1 Variogram models where no covariance function exists 56 3.4.2 Jumps at the origin and the nugget effect 56 3.5 Parameter estimation for variogram and covariance models 57 3.5.1 Estimation with a nonconstant mean function 62 3.6 Prediction for the phosphorus data 63 3.7 Nonstationary covariance models 69 4 Spatial models and statistical inference 71 4.1 Estimation in the Gaussian case 74 4.1.1 A data example: model fitting for the wheat yield data 75 4.2 Estimation for binary spatial observations 78 4.2.1 Edge effects 83 4.2.2 Goodness of model fit 84 5 Isotropy 87 5.1 Geometric anisotropy 91 5.2 Other types of anisotropy 92 5.3 Covariance modeling under anisotropy 93 5.4 Detection of anisotropy: the rose plot 94 5.5 Parametric methods to assess isotropy 96 5.6 Nonparametric methods of assessing anisotropy 97 5.6.1 Regularly spaced data case 97 5.6.2 Irregularly spaced data case 101 5.6.3 Choice of spatial lags for assessment of isotropy 104 5.6.4 Test statistics 105 5.6.5 Numerical results 107 5.7 Assessment of isotropy for general sampling designs 111 5.7.1 A stochastic sampling design 111 5.7.2 Covariogram estimation and asymptotic properties 112 5.7.3 Testing for spatial isotropy 113 5.7.4 Numerical results for general spatial designs 115 5.7.5 Effect of bandwidth and block size choice 117 5.8 An assessment of isotropy for the longleaf pine sizes 120 CONTENTS vii 6 Space–time data 123 6.1 Space–time observations 123 6.2 Spatio-temporal stationarity and spatio-temporal prediction 124 6.3 Empirical estimation of the variogram, covariance models, and estimation 125 6.3.1 Space–time symmetry and separability 126 6.4 Spatio-temporal covariance models 127 6.4.1 Nonseparable space–time covariance models 128 6.5 Space–time models 130 6.6 Parametric methods of assessing full symmetry and space–time separability 132 6.7 Nonparametric methods of assessing full symmetry and space–time separability 133 6.7.1 Irish wind data 139 6.7.2 Pacific Ocean wind data 141 6.7.3 Numerical experiments based on the Irish wind data 142 6.7.4 Numerical experiments on the test for separability for data on a grid 144 6.7.5 Taylor’s hypothesis 145 6.8 Nonstationary space–time covariance models 147 7 Spatial point patterns 149 7.1 The Poisson process and spatial randomness 150 7.2 Inhibition models 156 7.3 Clustered models 158 8 Isotropy for spatial point patterns 167 8.1 Some large sample results 169 8.2 A test for isotropy 170 8.3 Practical issues 171 8.4 Numerical results 173 8.4.1 Poisson cluster processes 173 8.4.2 Simple inhibition processes 176 8.5 An application to leukemia data 177 9 Multivariate spatial and spatio-temporal models 181 9.1 Cokriging 183 9.2 An alternative to cokriging 186 viii CONTENTS 9.2.1 Statistical model 187 9.2.2 Model fitting 188 9.2.3 Prediction 191 9.2.4 Validation 192 9.3 Multivariate covariance functions 194 9.3.1 Variogram function or covariance function? 195 9.3.2 Intrinsic correlation, separable models 196 9.3.3 Coregionalization and kernel convolution models 197 9.4 Testing and assessing intrinsic correlation 198 9.4.1 Testing procedures for intrinsic correlation and symmetry 201 9.4.2 Determining the order of a linear model of coregionalization 202 9.4.3 Covariance estimation 204 9.5 Numerical experiments 205 9.5.1 Symmetry 205 9.5.2 Intrinsic correlation 207 9.5.3 Linear model of coregionalization 209 9.6 A data application to pollutants 209 9.7 Discussion 213 10 Resampling for correlated observations 215 10.1 Independent observations 218 10.1.1 U-statistics 218 10.1.2 The jackknife 220 10.1.3 The bootstrap 221 10.2 Other data structures 224 10.3 Model-based bootstrap 225 10.3.1 Regression 225 10.3.2 Time series: autoregressive models 227 10.4 Model-free resampling methods 228 10.4.1 Resampling for stationary dependent observations 230 10.4.2 Block bootstrap 232 10.4.3 Block jackknife 233 10.4.4 A numerical experiment 233 10.5 Spatial resampling 236 10.5.1 Model-based resampling 237 10.5.2 Monte Carlo maximum likelihood 238 CONTENTS ix 10.6 Model-free spatial resampling 240 10.6.1 A spatial numerical experiment 244 10.6.2 Spatial bootstrap 246 10.7 Unequally spaced observations 246 Bibliography 251 Index 263 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Wiley_-_Spatial_Statistics_and_Spatio-Temporal_Data_-_Covariance_Functions_and_Directional_Properties_(Michael_Sherman_2011).pdf
2016-09-12 19:19:44, 2.31 M
» 收录本帖的淘帖专辑推荐
数学分析 | 自然科学 |
» 猜你喜欢
Materials Today Chemistry审稿周期
已经有4人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有3人回复
参与限项
已经有3人回复
假如你的研究生提出不合理要求
已经有7人回复
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
» 本主题相关价值贴推荐,对您同样有帮助:
26楼2017-01-16 05:11:53
简单回复
applaq2楼
2016-09-12 22:58
回复
五星好评 顶一下,感谢分享!
2016-09-13 11:17
回复
五星好评 顶一下,感谢分享!
2016-09-14 06:31
回复
五星好评 顶一下,感谢分享!
gzbaby5楼
2016-09-14 06:58
回复
五星好评 顶一下,感谢分享!
2016-09-14 08:51
回复
五星好评 顶一下,感谢分享!
ha16687楼
2016-09-14 10:19
回复
五星好评 顶一下,感谢分享!
muchex8楼
2016-09-14 22:28
回复
五星好评 顶一下,感谢分享!
xcontext9楼
2016-09-15 05:09
回复
五星好评 顶一下,感谢分享!
xcontext10楼
2016-09-15 05:17
回复
顶一下,感谢分享!
zhchzhsh207611楼
2016-09-15 21:27
回复
五星好评 顶一下,感谢分享!
daijzh12楼
2016-09-16 18:25
回复
五星好评 顶一下,感谢分享!
yuanbing13楼
2016-09-17 16:30
回复
五星好评 顶一下,感谢分享!
keda14楼
2016-09-18 02:12
回复
五星好评 顶一下,感谢分享!
derek88815楼
2016-09-18 07:30
回复
五星好评 顶一下,感谢分享!
788816楼
2016-09-18 09:25
回复
五星好评 顶一下,感谢分享!
胡不归17楼
2016-09-18 09:46
回复
五星好评 顶一下,感谢分享!
zhangfanping18楼
2016-09-18 11:07
回复
五星好评 顶一下,感谢分享!
甲先生19楼
2016-09-26 20:25
回复
五星好评 顶一下,感谢分享!
yanglishan20楼
2016-09-27 11:11
回复
五星好评 顶一下,感谢分享!
wangth092121楼
2016-10-07 11:00
回复
五星好评 顶一下,感谢分享!
昆明大马山22楼
2016-11-10 21:53
回复
五星好评 感谢分享!
lixinhuacq23楼
2016-11-14 21:26
回复
五星好评 顶一下,感谢分享!
navolo24楼
2016-11-21 22:19
回复
五星好评 



navolo25楼
2016-11-21 22:20
回复
顶一下,感谢分享!
2017-01-18 21:17
回复
五星好评 顶一下,感谢分享!
沙漠之狐923028楼
2018-01-24 16:22
回复
五星好评 顶一下,感谢分享!
parculonew29楼
2019-01-10 17:24
回复
五星好评 顶一下,感谢分享!












回复此楼