24小时热门版块排行榜    

查看: 435  |  回复: 1
【悬赏金币】回答本帖问题,作者zhangrong441将赠送您 5 个金币

zhangrong441

金虫 (小有名气)

[求助] 求查一下这一篇文章是否SCI检索,谢谢。 已有1人参与

Hui Wang, Ting-Zhu Huang, Zhi Xu, Yugang Wang. A two-stage image segmentation via global and local region active contours. Neurocomputing, 2016, 205:130-140.
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

liouzhan654

版主 (知名作家)

优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
zhangrong441(paperhunter代发): 金币+5, 鼓励交流 2016-08-17 09:37:29
恭喜你
检索情况如下:

A two-stage image segmentation via global and local region active contours
作者:Wang, H (Wang, Hui)[ 1,2 ] ; Huang, TZ (Huang, Ting-Zhu)[ 1 ] ; Xu, Z (Xu, Zhi)[ 1 ] ; Wang, YG (Wang, Yugang)[ 1 ]
NEUROCOMPUTING
卷: 205  页: 130-140
DOI: 10.1016/j.neucom.2016.03.050
出版年: SEP 12 2016
查看期刊信息
摘要
Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussian distribution, which can rapidly get a coarse segmentation result. Subsequently, by employing a window function, we further segment the image by using the local region active contour, where we use the final active contour of the first stage as the initialization. Compared with the first stage, the local object details are accurately segmented in the second stage, which can be considered as an accurate segmentation result. Due to the suitable initialization from the first stage, the second stage works well in accurately segmenting the image, especially in local details. To regularize the level set function, we introduce a Laplace operator, which efficiently eliminates the expensive re-initialization process of traditional level set methods. Compared with the state-of-the-art methods, experiment results demonstrate the effectiveness and performance of the proposed method with applications to synthetical and real-world images, which usually contain noise, blurry boundaries, and intensity inhomogeneities. (C) 2016 Elsevier B.V. All rights reserved.
关键词
作者关键词:Image segmentation; Active contours; Level set method; Two-stage
KeyWords Plus:LEVEL SET EVOLUTION; FITTING ENERGY; CURVE EVOLUTION; MODEL; DRIVEN; FLOW; ALGORITHMS; EFFICIENT; MUMFORD; SNAKES
作者信息
通讯作者地址: Huang, TZ (通讯作者)
              Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China.
地址:
              [ 1 ] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
              [ 2 ] Anshun Univ, Sch Math & Phys, Anshun 561000, Guizhou, Peoples R China
电子邮件地址:wanghui561403@163.com; tingzhuhuang@126.com
基金资助致谢
基金资助机构        授权号
973 Program        
2013CB329404
NSFC        
61370147
61170311
Sichuan Province Sci. & Tech. Research Project        
2012GZX0080
查看基金资助信息   
出版商
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
类别 / 分类
研究方向:Computer Science
Web of Science 类别:Computer Science, Artificial Intelligence
文献信息
文献类型:Article
语种:English
入藏号: WOS:000378952500013
ISSN: 0925-2312
eISSN: 1872-8286
期刊信息
Impact Factor (影响因子): Journal Citation Reports®
其他信息
IDS 号: DQ1HQ
Web of Science 核心合集中的 "引用的参考文献": 45
Web of Science 核心合集中的 "被引频次": 0
思想是人类心灵的灯塔,指引着社会前进的方向。
2楼2016-08-17 09:35:55
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zhangrong441 的主题更新
不应助 确定回帖应助 (注意:应助才可能被奖励,但不允许灌水,必须填写15个字符以上)
信息提示
请填处理意见