| 查看: 861 | 回复: 9 | ||
| 【奖励】 本帖被评价7次,作者maojun1998增加金币 5.6 个 | ||
[资源]
GTM245Complex Analysis
|
||
|
Contents Preface vii Standard Notation and Commonly Used Symbols ix Chapter 1. The Fundamental Theorem in Complex Function Theory 1 1.1. Some motivation 1 1.2. The Fundamental Theorem 3 1.3. The plan for the proof 4 1.4. Outline of text 5 Chapter 2. Foundations 7 2.1. Introduction and preliminaries 7 2.2. Differentiability and holomorphic mappings 14 Exercises 18 Chapter 3. Power Series 23 3.1. Complex power series 24 3.2. More on power series 32 3.3. The exponential function, the logarithm function, and some complex trigonometric functions 36 3.4. An identity principle 42 3.5. Zeros and poles 47 Exercises 52 Chapter 4. The Cauchy Theory–A Fundamental Theorem 59 4.1. Line integrals and differential forms 60 4.2. The precise difference between closed and exact forms 65 4.3. Integration of closed forms and the winding number 70 4.4. Homotopy and simple connectivity 72 4.5. Winding number 75 4.6. Cauchy Theory: initial version 78 Exercises 80 Chapter 5. The Cauchy Theory–Key Consequences 83 5.1. Consequences of the Cauchy Theory 83 xii CONTENTS 5.2. Cycles and homology 89 5.3. Jordan curves 90 5.4. The Mean Value Property 93 5.5. On elegance and conciseness 96 5.6. Appendix: Cauchy’s integral formula for smooth functions 96 Exercises 97 Chapter 6. Cauchy Theory: Local Behavior and Singularities of Holomorphic Functions 101 6.1. Functions holomorphic on an annulus 101 6.2. Isolated singularities 103 6.3. Zeros and poles of meromorphic functions 106 6.4. Local properties of holomorphic maps 110 6.5. Evaluation of definite integrals 113 Exercises 117 Chapter 7. Sequences and Series of Holomorphic Functions 123 7.1. Consequences of uniform convergence on compact sets 123 7.2. A metric on C(D) 126 7.3. The cotangent function 130 7.4. Compact sets in H(D) 134 7.5. Approximation theorems and Runge’s theorem 138 Exercises 146 Chapter 8. Conformal Equivalence 147 8.1. Fractional linear (M¨obius) transformations 148 8.2. Aut(D) for D = C, C, D, and H2 152 8.3. The Riemann Mapping Theorem 154 8.4. Hyperbolic geometry 158 8.5. Finite Blaschke products 167 Exercises 169 Chapter 9. Harmonic Functions 173 9.1. Harmonic functions and the Laplacian 173 9.2. Integral representation of harmonic functions 176 9.3. The Dirichlet problem 179 9.4. The Mean Value Property: a characterization 186 9.5. The reflection principle 186 Exercises 188 Chapter 10. Zeros of Holomorphic Functions 10.4. The field of meromorphic functions 207 10.5. Infinite Blaschke products 209 Exercises 209 BIBLIOGRAPHICAL NOTES 213 Bibliography 215 Index 217 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : bok%3A978-0-387-74715-6.pdf
2016-07-15 22:05:13, 2.42 M
» 猜你喜欢
带资进组求博导收留
已经有10人回复
最近几年招的学生写论文不引自己组发的文章
已经有11人回复
写了一篇“相变储能技术在冷库中应用”的论文,论文内容以实验为主,投什么期刊合适?
已经有4人回复
需要合成515-64-0,50g,能接单的留言
已经有3人回复
中科院杭州医学所招收博士生一名(生物分析化学、药物递送)
已经有3人回复
临港实验室与上科大联培博士招生1名
已经有8人回复
想换工作。大多数高校都是 评职称时 认可5年内在原单位取得的成果吗?
已经有4人回复
» 本主题相关价值贴推荐,对您同样有帮助:
简单回复
fxluman2楼
2016-07-19 19:39
回复
五星好评 顶一下,感谢分享!
liang853楼
2016-07-24 07:06
回复
五星好评 顶一下,感谢分享!
daduan4楼
2016-07-29 08:23
回复
五星好评 顶一下,感谢分享!
ufemach5楼
2016-08-23 13:31
回复
五星好评 顶一下,感谢分享!
tigou6楼
2016-10-04 22:54
回复
五星好评 顶一下,感谢分享!
fenggaol7楼
2017-09-20 09:44
回复
五星好评 顶一下,感谢分享!
tianwk8楼
2018-05-25 18:26
回复
五星好评 顶一下,感谢分享!
yyysx439楼
2018-07-10 01:55
回复
顶一下,感谢分享 发自小木虫IOS客户端
fenggaol10楼
2018-07-10 07:35
回复
顶一下,感谢分享!













回复此楼