| 查看: 855 | 回复: 9 | ||
| 【奖励】 本帖被评价7次,作者maojun1998增加金币 5.6 个 | ||
[资源]
GTM245Complex Analysis
|
||
|
Contents Preface vii Standard Notation and Commonly Used Symbols ix Chapter 1. The Fundamental Theorem in Complex Function Theory 1 1.1. Some motivation 1 1.2. The Fundamental Theorem 3 1.3. The plan for the proof 4 1.4. Outline of text 5 Chapter 2. Foundations 7 2.1. Introduction and preliminaries 7 2.2. Differentiability and holomorphic mappings 14 Exercises 18 Chapter 3. Power Series 23 3.1. Complex power series 24 3.2. More on power series 32 3.3. The exponential function, the logarithm function, and some complex trigonometric functions 36 3.4. An identity principle 42 3.5. Zeros and poles 47 Exercises 52 Chapter 4. The Cauchy Theory–A Fundamental Theorem 59 4.1. Line integrals and differential forms 60 4.2. The precise difference between closed and exact forms 65 4.3. Integration of closed forms and the winding number 70 4.4. Homotopy and simple connectivity 72 4.5. Winding number 75 4.6. Cauchy Theory: initial version 78 Exercises 80 Chapter 5. The Cauchy Theory–Key Consequences 83 5.1. Consequences of the Cauchy Theory 83 xii CONTENTS 5.2. Cycles and homology 89 5.3. Jordan curves 90 5.4. The Mean Value Property 93 5.5. On elegance and conciseness 96 5.6. Appendix: Cauchy’s integral formula for smooth functions 96 Exercises 97 Chapter 6. Cauchy Theory: Local Behavior and Singularities of Holomorphic Functions 101 6.1. Functions holomorphic on an annulus 101 6.2. Isolated singularities 103 6.3. Zeros and poles of meromorphic functions 106 6.4. Local properties of holomorphic maps 110 6.5. Evaluation of definite integrals 113 Exercises 117 Chapter 7. Sequences and Series of Holomorphic Functions 123 7.1. Consequences of uniform convergence on compact sets 123 7.2. A metric on C(D) 126 7.3. The cotangent function 130 7.4. Compact sets in H(D) 134 7.5. Approximation theorems and Runge’s theorem 138 Exercises 146 Chapter 8. Conformal Equivalence 147 8.1. Fractional linear (M¨obius) transformations 148 8.2. Aut(D) for D = C, C, D, and H2 152 8.3. The Riemann Mapping Theorem 154 8.4. Hyperbolic geometry 158 8.5. Finite Blaschke products 167 Exercises 169 Chapter 9. Harmonic Functions 173 9.1. Harmonic functions and the Laplacian 173 9.2. Integral representation of harmonic functions 176 9.3. The Dirichlet problem 179 9.4. The Mean Value Property: a characterization 186 9.5. The reflection principle 186 Exercises 188 Chapter 10. Zeros of Holomorphic Functions 10.4. The field of meromorphic functions 207 10.5. Infinite Blaschke products 209 Exercises 209 BIBLIOGRAPHICAL NOTES 213 Bibliography 215 Index 217 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : bok%3A978-0-387-74715-6.pdf
2016-07-15 22:05:13, 2.42 M
» 猜你喜欢
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
真诚求助:手里的省社科项目结项要求主持人一篇中文核心,有什么渠道能发核心吗
已经有6人回复
孩子确诊有中度注意力缺陷
已经有14人回复
三甲基碘化亚砜的氧化反应
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
简单回复
fxluman2楼
2016-07-19 19:39
回复
五星好评 顶一下,感谢分享!
liang853楼
2016-07-24 07:06
回复
五星好评 顶一下,感谢分享!
daduan4楼
2016-07-29 08:23
回复
五星好评 顶一下,感谢分享!
ufemach5楼
2016-08-23 13:31
回复
五星好评 顶一下,感谢分享!
tigou6楼
2016-10-04 22:54
回复
五星好评 顶一下,感谢分享!
fenggaol7楼
2017-09-20 09:44
回复
五星好评 顶一下,感谢分享!
tianwk8楼
2018-05-25 18:26
回复
五星好评 顶一下,感谢分享!
yyysx439楼
2018-07-10 01:55
回复
顶一下,感谢分享 发自小木虫IOS客户端
fenggaol10楼
2018-07-10 07:35
回复
顶一下,感谢分享!













回复此楼