| 查看: 684 | 回复: 0 | |||
gy_xmc2015铜虫 (小有名气)
|
[交流]
综述推荐|随机复杂网络(作者:Michael Small等)
|
|
http://nsr.oxfordjournals.org/content/1/3/357.full 当今,复杂网络无处不在,从国家电网、航空网到疾病传播网、神经网络和蛋白质相互作用网。为了理解这些复杂系统和网络的行为,我们首先需要理清这些网络结构的特征。对于这些网络,最常用的分类方法是依据他们的度分布,无标度网络(Scale Free, SF)就是由此而来;有时也会根据一些其他统计特征,例如,小世界网络是根据平均路径长度和聚集系数来定义的。对于特定的度分布网络,可以有很多种算法去实现,所以存在各种不同的网络。关于如何产生一个无标度网络,已经有很多的生成模型,其中最出名的就是优先连接模型(Barabási–Albert, BA模型)。关于这些模型得出的网络,我们无法明确地评价哪个是最好、最完美的。然而,我们可以明确地从数学上指出,对于一个特定的度分布网络,哪个网络是发生概率最大的,也就是说最典型、最具代表性的。 为了对该领域的研究进行系统地阐述和归纳,西澳大利亚大学Michael Small教授及其研究团队近期在《国家科学评论》发表了综述文章,题为“随机复杂网络”(http://nsr.oxfordjournals.org/content/1/3/357.full)。 文章首先着重介绍了从随机图到复杂网络的研究进程,特别是复杂网络科学在数学图论领域的起源。文章以无标度网络为主要研究对象,详细地论述了无标度网络的来源和优先连接模型;给出了判断一个网络是否典型的三个标准,可用(连通、无自环和无重边)、概率大和随机无偏差,并指出优先连接模型满足前两个标准,不满足第三个。 文章通过随机连边的方法证明了,对于一个特定的度分布网络,存在拓扑结构和特征差异很大的网络。然后,归纳和分析了现有产生随机复杂网络的方法,指出了存在的一些不足,如配置模型方法。作者引入了一个利用马尔科夫蒙特卡洛过程来产生典型网络的方法,而且给出了一个便捷的边交换方法,以解决生成大规模网络速度较慢的问题。最后,作者对比了这种网络和BA网络在网络的鲁棒性、脆弱性和一些常用统计特征方面的差别,认为优先连接模型给网络带来了特殊的属性和结构特征。 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Natl_Sci_Rev-2014-Small-357-67.pdf
2016-05-27 13:24:42, 2.84 M
» 猜你喜欢
假如你的研究生提出不合理要求
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有27人回复
所感
已经有3人回复
要不要辞职读博?
已经有7人回复
不自信的我
已经有11人回复
北核录用
已经有3人回复
实验室接单子
已经有3人回复
磺酰氟产物,毕不了业了!
已经有8人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有10人回复
26申博(荧光探针方向,有机合成)
已经有4人回复












回复此楼