| 查看: 4908 | 回复: 6 | |||||||||||
jugengfans金虫 (正式写手)
|
[交流]
请问VASP的LDA+U ,LDAUTYPE=1是什么方法?已有3人参与
|
|
看了文献,说vasp的U可以采用各向异性的方法,U和J都是矩阵 这个是不是就对应LDAUTYPE=1? 默认的是2,有人用1吗? 付手册内容。 LDAUTYPE = 1 | 2 | 4 Default: LDAUTYPE = 2 Description: LDAUTYPE specifies which type of L(S)DA+U approach will be used. The L(S)DA often fails to describe systems with localized (strongly correlated) d and f-electrons (this manifests itself primarily in the form of unrealistic one-electron energies). In some cases this can be remedied by introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, as an on-site replacement of the L(S)DA. This approach is commonly known as the L(S)DA+U method. Setting LDAU=.TRUE. in the INCAR file switches on the L(S)DA+U. LDAUTYPE=1: The rotationally invariant LSDA+U introduced by Liechtenstein et al.[1] This particular flavour of LSDA+U is of the form E_{{{\rm {HF}}}}={\frac {1}{2}}\sum _{{\{\gamma \}}}(U_{{\gamma _{1}\gamma _{3}\gamma _{2}\gamma _{4}}}-U_{{\gamma _{1}\gamma _{3}\gamma _{4}\gamma _{2}}}){{\hat n}}_{{\gamma _{1}\gamma _{2}}}{{\hat n}}_{{\gamma _{3}\gamma _{4}}} and is determined by the PAW on-site occupancies {{\hat n}}_{{\gamma _{1}\gamma _{2}}}=\langle \Psi ^{{s_{2}}}\mid m_{2}\rangle \langle m_{1}\mid \Psi ^{{s_{1}}}\rangle and the (unscreened) on-site electron-electron interaction U_{{\gamma _{1}\gamma _{3}\gamma _{2}\gamma _{4}}}=\langle m_{1}m_{3}\mid {\frac {1}{|{\mathbf {r}}-{\mathbf {r}}^{\prime }|}}\mid m_{2}m_{4}\rangle \delta _{{s_{1}s_{2}}}\delta _{{s_{3}s_{4}}} where |m〉 are real spherical harmonics of angular momentum L=LDAUL. The unscreened e-e interaction Uγ1γ3γ2γ4 can be written in terms of the Slater integrals F^{0}, F^{2}, F^{4}, and F^{6} (f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially F^{0}). In practice these integrals are therefore often treated as parameters, i.e., adjusted to reach agreement with experiment in some sense: equilibrium volume, magnetic moment, band gap, structure. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, U and J (LDAUU and LDAUJ, respectively). U and J are sometimes extracted from constrained-LSDA calculations. These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment): L\; F^{0}\; F^{2}\; F^{4}\; F^{6}\; 1\; U\; 5J\; - - 2\; U\; {\frac {14}{1+0.625}}J 0.625F^{2}\; - 3\; U\; {\frac {6435}{286+195\cdot 0.668+250\cdot 0.494}}J 0.668F^{2}\; 0.494F^{2}\; The essence of the LSDA+U method consists of the assumption that one may now write the total energy as: E_{{{\mathrm {tot}}}}(n,{\hat n})=E_{{{\mathrm {DFT}}}}(n)+E_{{{\mathrm {HF}}}}({\hat n})-E_{{{\mathrm {dc}}}}({\hat n}) where the Hartree-Fock like interaction replaces the LSDA on site due to the fact that one subtracts a double counting energy E_{{{\mathrm {dc}}}}, which supposedly equals the on-site LSDA contribution to the total energy, E_{{{\mathrm {dc}}}}({\hat n})={\frac {U}{2}}{{\hat n}}_{{{\mathrm {tot}}}}({{\hat n}}_{{{\mathrm {tot}}}}-1)-{\frac {J}{2}}\sum _{\sigma }{{\hat n}}_{{{\mathrm {tot}}}}^{\sigma }({{\hat n}}_{{{\mathrm {tot}}}}^{\sigma }-1). LDAUTYPE=2: The simplified (rotationally invariant) approach to the LSDA+U, introduced by Dudarev et al.[2] This flavour of LSDA+U is of the following form: E_{{{\mathrm {LSDA+U}}}}=E_{{{\mathrm {LSDA}}}}+{\frac {(U-J)}{2}}\sum _{\sigma }\left[\left(\sum _{{m_{1}}}n_{{m_{1},m_{1}}}^{{\sigma }}\right)-\left(\sum _{{m_{1},m_{2}}}{\hat n}_{{m_{1},m_{2}}}^{{\sigma }}{\hat n}_{{m_{2},m_{1}}}^{{\sigma }}\right)\right]. This can be understood as adding a penalty functional to the LSDA total energy expression that forces the on-site occupancy matrix in the direction of idempotency, {\hat n}^{{\sigma }}={\hat n}^{{\sigma }}{\hat n}^{{\sigma }}. Real matrices are only idempotent when their eigenvalues are either 1 or 0, which for an occupancy matrix translates to either fully occupied or fully unoccupied levels. Note: in Dudarev's approach the parameters U and J do not enter seperately, only the difference (U-J) is meaningful. |
» 收录本帖的淘帖专辑推荐
VASP |
» 猜你喜欢
谈谈两天一夜的“延安行”
已经有15人回复
EST投稿状态问题
已经有6人回复
职称评审没过,求安慰
已经有15人回复
垃圾破二本职称评审标准
已经有11人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有16人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
聘U V热熔胶研究人员
已经有10人回复
求助文献
已经有3人回复
投稿返修后收到这样的回复,还有希望吗
已经有8人回复
三无产品还有机会吗
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
在用HSE,vasp总是没有运行结果.
已经有1人回复
VASP,LDA+U中U值的确定,急急急!!
已经有3人回复
VASP中赝势的分类
已经有19人回复
VASP计算DOS时卡在writing wavefunctions不动了是怎么回事?
已经有5人回复
用VASP做材料的静态计算时,总是报错,求高手解答,有金币哦~~
已经有6人回复
VASP中vdW计算泛函警告
已经有7人回复
VASP编译问题,为何编译成功,计算的时候有输出,但是scf的第一步就自动断了呢?
已经有1人回复
【求助】vasp能带计算出现错误
已经有3人回复
请问,Exited with exit code 137如何解决
已经有1人回复
VASP5.3 k-points parallelism计算, KPAR的设置,KPAR=2
已经有11人回复
VASP 优化自动停掉,OUTCAR有WARNING: aliasing errors
已经有1人回复
请问谁用过LDA+U即LDAUTYPE=4
已经有0人回复
请问 GW 近似计算时,赝势选择有要求否?
已经有5人回复
HSE06计算突然停止?
已经有6人回复
终止vasp时出现的问题
已经有1人回复
求助: vasp中化合物势函数的选取。
已经有6人回复
【求助】关于拟合得到体弹性模量&自旋极化&LDA+U等问题,望大家指点指点
已经有4人回复
【已解决】VASP自旋轨道耦合scf计算
已经有2人回复
【求助】VASP的GGA和LDA
已经有0人回复
【求助】LDA+U优化问题
已经有10人回复
【求助】求VASP中 LDA-VWN赝势文件,在文献中有人用过,但是我的赝势文件只有LDA-CA的
已经有1人回复
monkeylove
木虫 (正式写手)
- 应助: 10 (幼儿园)
- 金币: 2496.7
- 散金: 104
- 红花: 3
- 帖子: 400
- 在线: 171.5小时
- 虫号: 3134237
- 注册: 2014-04-14
- 专业: 凝聚态物性 II :电子结构
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
jugengfans
金虫 (正式写手)
- 应助: 3 (幼儿园)
- 金币: 773.9
- 散金: 151
- 红花: 3
- 帖子: 537
- 在线: 205.6小时
- 虫号: 291609
- 注册: 2006-10-29
- 专业: 凝聚态物性 II :电子结构
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
jugengfans
金虫 (正式写手)
- 应助: 3 (幼儿园)
- 金币: 773.9
- 散金: 151
- 红花: 3
- 帖子: 537
- 在线: 205.6小时
- 虫号: 291609
- 注册: 2006-10-29
- 专业: 凝聚态物性 II :电子结构
我爱直辖市
木虫 (正式写手)
- 应助: 2 (幼儿园)
- 金币: 2315.8
- 散金: 285
- 红花: 4
- 帖子: 548
- 在线: 52.9小时
- 虫号: 4439734
- 注册: 2016-02-26
- 性别: GG
- 专业: 有机合成
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
jugengfans
金虫 (正式写手)
- 应助: 3 (幼儿园)
- 金币: 773.9
- 散金: 151
- 红花: 3
- 帖子: 537
- 在线: 205.6小时
- 虫号: 291609
- 注册: 2006-10-29
- 专业: 凝聚态物性 II :电子结构













回复此楼