24小时热门版块排行榜    

查看: 1648  |  回复: 3

gy_xmc2015

铜虫 (小有名气)

[交流] 文小刚综述:2+1D波色拓扑序理论 已有3人参与

综述:2+1D波色拓扑序理论

大自然中物质形态丰富多样,从中学教科书上出现的固态、液态、气态和等离子体到大学时接触到的晶体、液晶、铁磁体、反铁磁体、超流体、超导体,不一而足。令人吃惊的是凝聚态物理学可以使用Ginzburg-Landau理论来统一解释如此繁多的物质形态。该理论后来成为相和相变的标准理论。

不同材料的性能多样性来源于材料中粒子的不同排列方式,而粒子的排列被称为“序”或者“相”。朗道指出排列的对称性的不同导致了相的不同。Ginzburg-Landau理论引入序参量来区分相和相变:当序参量为0,为对称相;当序参量为非零,为对称破缺相。这一对称破缺理论是凝聚态物理学的一块基石。

但随着分数量子霍尔效应和高温超导体的发现,Ginzburg-Landau理论的局限性被凸显出来:该理论无法解释这两个现象甚至与之相悖。为了解释高温度导体中的自旋液体和分数量子霍尔效应现象,美国麻省理工学院的文小刚教授,基于可测量,引入了拓扑序的概念。文小刚教授在2016年第1期《国家科学评论》中撰写了一篇题为“2+1D波色拓扑序理论”的综述文章(http://nsr.oxfordjournals.org/content/3/1/68.full),该文章深入浅出、层层递进地详细介绍了拓扑序的发现和发展。微观上讲,拓扑序来源于基态的长程纠缠模式。作为新的物质形态和物理现象,拓扑序和长程纠缠需要一个全新的语言和数学描述。文小刚教授以1989年左右提出的拓扑序可测量(S,T,c)为基础,建立了一个简单的描述拓扑序的数学体系。该综述文章以拓扑序的定义为出发点,从拓扑基态简并、拓扑序和相变、拓扑序表征量和拓扑序理论现状等角度阐述了拓扑序这一抽象概念,最后展示了一系列低阶低维拓扑序的完全分类,并进行了具体解释。文小刚教授构建的该数学体系可以系统地描述2+1D波色拓扑序(即局域波色子或自旋系统中的拓扑序)。

全文可免费下载: http://nsr.oxfordjournals.org/content/3/1/68.full

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
延伸阅读

文小刚教授研究拓扑序的经历
[节选自“赛先生”微信公众号的文章“文小刚:创新就是孩子的游戏”,发表于2016年4月18日。]

有很长一段时间,在凝聚态物理中,大家有一个普遍观念:我们对物质的相和相变(像液相、固相、铁磁相、超导相等等,以及他们的转变)已经有了一个完备的理解,那就是朗道的对称性破缺理论。这一观念主导了我们对物态的研究:我们每碰到一个相,就要问什么对称性破缺了,每碰到一个相变,就要问对称性有什么变化。这种对物质态完备全面的理解,使很多人认为,我们已经看到凝聚态物理的末日。我们已经有了基本理论,剩下的仅仅是应用这些理论的工程技术活。

1987年我研究生毕业以后,从超弦转向凝聚态物理。当时一个凝聚态物理大家,又同情又怜惜地跟我说:现在转到凝聚态物理,已经没有什么好做的了。那时我懵懵懂懂,也没往心里去。转方向后,我一开始对高温超导中的量子自旋液体很感兴趣,因为觉得它好玩,又因为觉得它数学漂亮,有挑战性,还和标准凝聚态物理的思路非常不同。1989年我们发现一类自旋液体可以用朗道理论和时间反演对称破缺来描写。但随着进一步研究,我意识到,不同的手征自旋液体相可以具有完全相同的时间反演对称破缺。也就是说这些不同的手征自旋液体相,不能用朗道的对称性破缺理论来区分,来完全描写。后来我和牛谦又意识到实验中看到的量子霍尔相也完全不能用朗道的对称性破缺理论来描写。这些都是全新的以前没见过的物质相。我把这一类新的物质相叫做拓扑相(又叫拓扑物态)。

但做科学,不是起个名字就完事。新名字不代表新的科学进展。拓扑物态作为一个新现象,需要新的数学来刻画(因为老的对称性方法完全不适用)。基于超弦里的共形场论那里得来的直觉,我是把物质态放到有不同拓扑连通的空间中,利用物质态的基态简并度和空间拓扑的关系,来描写物质态中的拓扑序。可这一全新的观点全新的刻画,一开始并不被认同。后来的十年中,基本上只有我一个组开展拓扑序方面的工作,可这并不影响我对拓扑序的兴趣。我当时还做一些被认同的但不是那么重要的工作,挣一些基金,养我在拓扑序上的工作。我在拓扑序上的基础工作,没有一篇《科学》、《自然》的文章,只有一篇PRL是关于非阿贝尔拓扑物态。

十年以后,量子信息成为一个非常兴旺的领域,并开始影响到凝聚态物理。这时我们发现拓扑物态中的拓扑序,原来就是量子纠缠的不同构形。我记得在2002年意识到这一点时,我脑子里突然有一种清明升化的感觉(enlightened),虽然我当时对量子纠缠的定义还没搞清楚。对我来说这是从不知道的不知道,到知道的不知道的一次转折,使我对拓扑序的理解,更加升高了一个层次。这以前我虽然起了"拓扑序"这个名字,但我并不真正知道拓扑序是个什么东西。这以后我意识到,拓扑序=多体量子纠缠的构形。后来这一理解导致了拓扑序的高阶范畴学理论。高阶范畴学是一个大多数数学家都不问津的纯数学理论,而且也是一个正在发展的理论。为了系统地描写凝聚态物理中的拓扑序,我们必须进一步发展数学中的高阶范畴理论。物理前沿和数学前沿如此密切地接触,是牛顿以来的第一次。

我个人还认为,构成空间的量子比特海,也是一个具有拓扑序的拓扑物态。拓扑序和其对应的量子纠缠,是光子、电子以及其他一切基本粒子的起源。这在数学上已被证明是可能的。这是一个把相互作用和物质,把信息和物质都统一起来的超大统一理论。(标准的大统一理论仅仅统一了三种相互作用。)

目前拓扑物态已成为凝聚态物理最活跃的前沿之一。人们在寻找各种各样的材料来实现各种不同的拓扑序。如果我们找到一种材料,它能实现空间量子比特海中的弦网拓扑序,那么这个材料就能模拟所有的基本粒子。手里攥着这种材料,我们就可以宣称我们掌握了世界。

http://mp.weixin.qq.com/s?__biz= ... p;amp;ADPUBNO=26509
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Natl_Sci_Rev-2016-Wen-68-106.pdf
  • 2016-04-26 15:45:44, 760.57 K

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

akaishuichi6

银虫 (职业作家)


小木虫: 金币+0.5, 给个红包,谢谢回帖
valuable information,thank you very much
2楼2016-05-04 02:16:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
本帖仅楼主可见
3楼2016-09-19 22:32:57
已阅   申请物理EPI   回复此楼   编辑   查看我的主页
顶一下,感谢分享!

发自小木虫Android客户端
4楼2016-10-12 06:35:25
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 gy_xmc2015 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见