24小时热门版块排行榜    

CyRhmU.jpeg
查看: 544  |  回复: 0

旭月非损伤

新虫 (小有名气)


[交流] pH影响植物的氮营养吸收

根际的pH影响植物营养的吸收和积累,也影响微生物的活性、矿化的速率、离子的交换。胞外的pH影响质膜和周围环境之间的电势差,进而影响细胞膜上H+-ATPase的数量和活性,这些将会影响到无机氮的运输。NH4+和NO3-转运的机制在不同pH条件下不同,目前的模型认为氮的吸收通过低亲和转运系统(LATS)和高亲和转运系统(HATS),这两个转运系统与质子密切相关。


2010年,加拿大的科学家使用非损伤微测技术研究了针叶树和大豆根部NH4+和NO3-在pH影响下的吸收过程。许多种针叶树生长在酸性土壤中,但是他们对NH4+和NO3-的喜好有很大差异,并且pH影响氮素的吸收。测定了根部不同部位(根尖,距离根尖端5mm、10mm、20mm和30mm处)的NH4+、NO3-和质子流速,测定条件为50μM和1500μM的NH4NO3,pH为4和7。在大豆和扭叶松中,pH7时质子外流,但是pH4时质子内流。花旗松根尖后面都出现质子外流,花旗松能够在低pH下保持NH4+的吸收,可能与保持质子的外流相关,这种质子外流使植物能更好地适应酸性土壤。在这三种材料中,NO3-的吸收在中性pH下最大,特别是在高氮中,因此,氮浓度是决定在合适的pH时氮吸收的主要因素。


在花旗松和大豆中,氮素的吸收在1500μM中比50μM的NH4NO3中大,但是质子流图谱在每个物种中不同。这种离子流的结果提供了氮素在空间和时间上吸收的模式,说明了植物具有不同的营养吸收机制。
pH影响植物的氮营养吸收
图注:花旗松、大豆和扭叶松在不同NH4NO3和不同pH条件下H+、NH4+和NO3-的流速图。


关键词:高亲和转运系统(HATS, high-affinity transport system); 低亲和转运系统(LATS, low-affinity transport system); 非损伤微测技术(MIFE); 氮(N, nitrogen).


参考文献:Hawkins BJ and Robbins S. Physiologia Plantarum, 2010, 138: 238-247.


注:非损伤微测技术(NMT)包括:SIET、SVET、SPET、SERIS、SERP、SERE、SRET、MIFE®等。


版权所有,转载请注明出处!
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 旭月非损伤 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见