| ²é¿´: 2288 | »Ø¸´: 21 | |||||||
| ¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û18´Î£¬×÷Õßhuanying2000Ôö¼Ó½ð±Ò 14.4 ¸ö | |||||||
[×ÊÔ´]
Piezoelectric-Based Vibration Control From Macro to Micro/Nano Scale Systems
|
|||||||
|
Part I Introduction and Overview of Mechanical Vibrations 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 A Brief Overview of Smart Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Concept of Vibration Control .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Vibration Isolation vs. Vibration Absorption.. . . . . . . . . . . . . . . . 6 1.2.2 Vibration Absorption vs. Vibration Control . . . . . . . . . . . . . . . . . . 7 1.2.3 Classifications of Vibration-Control Systems . . . . . . . . . . . . . . . . 8 1.3 MathematicalModels of Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Linear vs. NonlinearModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Lumped-Parameters vs. Distributed-ParametersModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 An Introduction to Vibrations of Lumped-Parameters Systems . . . . . . . . . 13 2.1 Vibration Characteristics of Linear Discrete Systems . . . . . . . . . . . . . . . . . 13 2.2 Vibrations of Single-Degree-of-FreedomSystems . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Time-domain Response Characteristics . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Frequency Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Vibrations of Multi-Degree-of-FreedomSystems . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Eigenvalue Problem andModalMatrix Representation . . . . . 19 2.3.2 Classically Damped Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Non-proportional Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Illustrative Example from Vibration of Discrete Systems . . . . . . . . . . . . . 25 3 A Brief Introduction to VariationalMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 An Overview of Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Concept of Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 Properties of Variational Operator ı . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.3 The Fundamental Theorem of Variation. . . . . . . . . . . . . . . . . . . . . . 39 3.1.4 ConstrainedMinimization of Functionals .. . . . . . . . . . . . . . . . . . . 43 3.2 A Brief Overview of VariationalMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ix x Contents 3.2.1 Work¨CEnergy Theorem and Extended Hamilton¡¯s Principle.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Application of Euler Equation in Analytical Dynamics . . . . . 49 3.3 Steps in Deriving Equations ofMotion via AnalyticalMethod .. . . . . . 51 4 A Unified Approach to Vibrations of Distributed-Parameters Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Equilibrium State and Kinematics of a Deformable Body . . . . . . . . . . . . 56 4.1.1 Differential Equations of Equilibrium .. . . . . . . . . . . . . . . . . . . . . . . 56 4.1.2 Strain¨CDisplacement Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.3 Stress¨CStrain Constitutive Relationships . . . . . . . . . . . . . . . . . . . . . 62 4.2 Virtual Work of a Deformable body .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Illustrative Examples from Vibrations of Continuous Systems . . . . . . . 69 4.3.1 Longitudinal Vibration of Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 Transverse Vibration of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.3 Transverse Vibration of Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Eigenvalue Problem in Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 Discretization of Equations and Separable Solution .. . . . . . . . 87 4.4.2 NormalModes Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.3 Method of Eigenfunctions Expansion . . . . . . . . . . . . . . . . . . . . . . . .100 Part II Piezoelectric-Based Vibration-Control Systems 5 An Overview of Active Materials Utilized in Smart Structures . . . . . . . . . .115 5.1 PiezoelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 5.1.1 Piezoelectricity Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 5.1.2 Basic Behavior and Constitutive Models of PiezoelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 5.1.3 Practical Applications of PiezoelectricMaterials . . . . . . . . . . . .118 5.2 PyroelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 5.2.1 Constitutive Model of Pyroelectric Materials . . . . . . . . . . . . . . . .119 5.2.2 Common PyroelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 5.3 Electrorheological andMagnetorheological Fluids. . . . . . . . . . . . . . . . . . . .120 5.3.1 Electrorheological Fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 5.3.2 Magnetorheological Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 5.4 ShapeMemory Alloys (SMAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 5.4.1 SMA Physical Principles and Properties . . . . . . . . . . . . . . . . . . . . .123 5.4.2 Commercial Applications of SMAs . . . . . . . . . . . . . . . . . . . . . . . . . .124 5.5 Electrostrictive andMagnetostrictiveMaterials . . . . . . . . . . . . . . . . . . . . . . .125 5.5.1 ElectrostrictiveMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 5.5.2 MagnetostrictiveMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 6 Physical Principles and Constitutive Models of PiezoelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 6.1 Fundamentals of Piezoelectricity .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 6.1.1 Polarization and Piezoelectric Effects . . . . . . . . . . . . . . . . . . . . . . . .130 Contents xi 6.1.2 Crystallographic Structure of PiezoelectricMaterials . . . . . . .132 6.2 Constitutive Models of Piezoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . .134 6.2.1 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 6.2.2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 6.2.3 Nonlinear Characteristics of PiezoelectricMaterials . . . . . . . .139 6.3 Piezoelectric Material Constitutive Constants . . . . . . . . . . . . . . . . . . . . . . . . .140 6.3.1 General Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 6.3.2 Piezoelectric Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 6.4 Engineering Applications of Piezoelectric Materials and Structures .148 6.4.1 Application of Piezoceramics inMechatronic Systems . . . . .149 6.4.2 Motion Magnification Strategies for Piezoceramic Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 6.4.3 Piezoceramic-Based High PrecisionMiniatureMotors . . . . .150 6.5 Piezoelectric-Based Actuators and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 6.5.1 Piezoelectric-Based Actuator/Sensor Configurations .. . . . . . .151 6.5.2 Examples of Piezoelectric-Based Actuators/Sensors . . . . . . . .154 6.6 Recent Advances in Piezoelectric-Based Systems. . . . . . . . . . . . . . . . . . . . .156 6.6.1 Piezoelectric-BasedMicromanipulators .. . . . . . . . . . . . . . . . . . . . .156 6.6.2 Piezoelectrically Actuated Microcantilevers . . . . . . . . . . . . . . . . .156 6.6.3 Piezoelectrically Driven Translational Nano-Positioners .. . .158 6.6.4 Future Directions and Outlooks.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 7 Hysteretic Characteristics of PiezoelectricMaterials . . . . . . . . . . . . . . . . . . . . .161 7.1 The Origin of Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 7.1.1 Rate-Independent and Rate-Dependent Hysteresis . . . . . . . . . .162 7.1.2 Local versus NonlocalMemories . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 7.2 Hysteresis Nonlinearities in Piezoelectric Materials . . . . . . . . . . . . . . . . . .163 7.3 HysteresisModeling Frameworks for PiezoelectricMaterials . . . . . . . .164 7.3.1 PhenomenologicalHysteresisModels . . . . . . . . . . . . . . . . . . . . . . . .165 7.3.2 Constitutive-based Hysteresis Models . . . . . . . . . . . . . . . . . . . . . . . .170 7.4 Hysteresis Compensation Techniques .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 8 Piezoelectric-Based Systems Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 8.1 Modeling Preliminaries and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 8.2 Modeling Piezoelectric Actuators in Axial (Stacked) Configuration .185 8.2.1 Piezoelectric Stacked Actuators under No External Load .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 8.2.2 Piezoelectric Stacked Actuators with External Load . . . . . . . .189 8.2.3 Vibration Analysis of Piezoelectric Actuators in Axial Configuration ¨C An Example Case Study.. . . . . . . . . .192 8.3 Modeling Piezoelectric Actuators in Transverse (Bender) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 8.3.1 General Energy-basedModeling for Laminar Actuators . . . .198 8.3.2 Vibration Analysis of a Piezoelectrically Actuated Active Probe ¨C An Example Case Study.. . . . . . . .205 xii Contents 8.3.3 Equivalent BendingMoment Actuation Generation . . . . . . . . .213 8.4 A Brief Introduction to Piezoelectric Actuation in 2D . . . . . . . . . . . . . . . .219 8.4.1 General Energy-based Modeling for 2D Piezoelectric Actuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 8.4.2 Equivalent BendingMoment 2D Actuation Generation .. . . .224 8.5 Modeling Piezoelectric Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 8.5.1 Piezoelectric Stacked Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 8.5.2 Piezoelectric Laminar Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 8.5.3 Equivalent Circuit Models of Piezoelectric Sensors . . . . . . . . .230 9 Vibration Control Using Piezoelectric Actuators and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 9.1 Notion of Vibration Control and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . .233 9.2 Active Vibration Absorption using Piezoelectric Inertial Actuators . .235 9.2.1 Active Resonator Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 9.2.2 Delayed-Resonator Vibration Absorber . . . . . . . . . . . . . . . . . . . . . .242 9.3 Piezoelectric-Based Active Vibration-Control Systems . . . . . . . . . . . . . . .251 9.3.1 Control of Piezoceramic Actuators in Axial Configuration .252 9.3.2 Vibration Control Using Piezoelectric Laminar Actuators . .263 9.4 Piezoelectric-based Semi-active Vibration-Control Systems. . . . . . . . . .284 9.4.1 A Brief Overview of Switched-Stiffness Vibration-Control Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 9.4.2 Real-Time Implementation of Switched-Stiffness Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 9.4.3 Switched-Stiffness Vibration Control using PiezoelectricMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 9.4.4 Piezoelectric-Based Switched-Stiffness Experimentation .. .298 9.5 Self-sensing Actuation using PiezoelectricMaterials . . . . . . . . . . . . . . . . .302 9.5.1 Preliminaries and Background .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 9.5.2 Adaptation Strategy for Piezoelectric Capacitance . . . . . . . . . .304 9.5.3 Application of Self-sensing Actuation for Mass Detection..306 Part III Piezoelectric-BasedMicro/Nano Sensors and Actuators 10 Piezoelectric-BasedMicro- and Nano-Positioning Systems . . . . . . . . . . . . . . .313 10.1 Classification of Control andManipulation at the Nanoscale . . . . . . . . .313 10.1.1 Scanning Probe Microscopy-Based Control andManipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 10.1.2 Nanorobotic Manipulation-Based Control andManipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 10.2 Piezoelectrically DrivenMicro- and Nano-Positioning Systems . . . . .321 10.2.1 Piezoelectric Actuators Used in STMSystems . . . . . . . . . . . . . .322 10.2.2 Modeling Piezoelectric Actuators Used in STM Systems . . .322 10.3 Control of Single-Axis Piezoelectric Nano-positioning Systems . . . . .328 10.3.1 Feedforward Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330 Contents xiii 10.3.2 Feedback Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 10.4 Control of Multiple-Axis Piezoelectric Nano-positioning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 10.4.1 Modeling and Control of Coupled Parallel Piezo-Flexural Nano-Positioning Stages . . . . . . . . . . . . . . . . . . . . .336 10.4.2 Modeling and Control of Three-Dimensional Nano-Positioning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 11 Piezoelectric-Based Nanomechanical Cantilever Sensors . . . . . . . . . . . . . . . . .359 11.1 Preliminaries and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360 11.1.1 Fundamental Operation of Nanomechanical Cantilever Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360 11.1.2 Linear vs. Nonlinear and Small-scale vs. Large-scale Vibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 11.1.3 Common Methods of Signal Transduction in NMCS. . . . . . . .363 11.1.4 Engineering Applications and Recent Developments.. . . . . . .366 11.2 Modeling Frameworks for Nanomechanical Cantilever Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368 11.2.1 Linear and Nonlinear Vibration Analyses of Piezoelectrically-drivenNMCS. . . . . . . . . . . . . . . . . . . . . . . . . . . .368 11.2.2 Coupled Flexural-Torsional Vibration Analysis of NMCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388 11.3 Ultrasmall Mass Sensing and Materials Characterization using NMCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 11.3.1 Biological Species Detection using NMCS . . . . . . . . . . . . . . . . . .401 11.3.2 UltrasmallMass Detection using Active Probes . . . . . . . . . . . . .411 12 Nanomaterial-Based Piezoelectric Actuators and Sensors . . . . . . . . . . . . . . . .419 12.1 Piezoelectric Properties of Nanotubes (CNT and BNNT). . . . . . . . . . . . .420 12.1.1 A Brief Overview of Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420 12.1.2 Piezoelectricity in Nanotubes and Nanotube-BasedMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 12.2 Nanotube-Based Piezoelectric Sensors and Actuators . . . . . . . . . . . . . . . .423 12.2.1 Actuation and Sensing Mechanism in Multifunctional Nanomaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . .423 12.2.2 Fabrication of Nanotube-Based Piezoelectric Film Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426 12.2.3 Piezoelectric Properties Measurement of Nanotube-Based Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432 12.3 Structural Damping and Vibration Control Using Nanotubes-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434 12.3.1 Fabrication of Nanotube-Based Composites for Vibration Damping and Control . . . . . . . . . . . . . . . . . . . . . . . . . .434 12.3.2 Free Vibration Characterization of Nanotube-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436 xiv Contents 12.3.3 Forced Vibration Characterization of Nanotube-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 12.4 Piezoelectric Nanocomposites with Tunable Properties. . . . . . . . . . . . . . .446 12.4.1 A Brief Overview of Interphase Zone Control . . . . . . . . . . . . . . .446 12.4.2 Molecular Dynamic Simulations for Nanotube-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448 12.4.3 Continuum Level Elasticity Model of Nanotube-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451 12.4.4 Numerical Results and Discussions of Nanotube-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451 12.5 Electronic Textiles Comprised of Functional Nanomaterials . . . . . . . . .455 12.5.1 The Concept of Electronic Textiles . . . . . . . . . . . . . . . . . . . . . . . . . . .455 12.5.2 Fabrication of Nonwoven CNT-based Composite Fabrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455 12.5.3 Experimental Characterization of CNT-based Fabric Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 A.1 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 A.2 Indicial Notation and Summation Convention .. . . . . . . . . . . . . . . . . . . . . . . .466 A.2.1 Indicial Notation Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 A.2.2 The Kronecker Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 A.3 Equilibrium States and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 A.3.1 Equilibrium Points or States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 A.3.2 Concept of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 A.4 A Brief Overview of Fundamental Stability Theorems . . . . . . . . . . . . . . .471 A.4.1 Lyapunov Local and Global Stability Theorems .. . . . . . . . . . . .471 A.4.2 Local and Global Invariant Set Theorems .. . . . . . . . . . . . . . . . . . .474 Proofs of Selected Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 B.1 Proof of Theorem 9.1 (Dadfarnia et al. 2004a) . . . . . . . . . . . . . . . . . . . . . . . .477 B.2 Proof of Theorem 9.2 (Dadfarnia et al. 2004b) . . . . . . . . . . . . . . . . . . . . . . . .480 B.3 Proof of Theorem 9.3 (Ramaratnam and Jalili 2006a) . . . . . . . . . . . . . . . .482 B.4 Proof of Theorem 10.1 (Bashash and Jalili 2009) . . . . . . . . . . . . . . . . . . . . .483 B.5 Proof of Theorem 10.2 (Bashash and Jalili 2009) . . . . . . . . . . . . . . . . . . . . .484 |
» ±¾Ìû¸½¼þ×ÊÔ´Áбí
-
»¶Ó¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æÈ¨ÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺xiaomuchong@tal.com - ¸½¼þ 1 : Piezoelectric-Based_Vibration_Control.pdf
2015-12-02 19:08:00, 15.47 M
» ÊÕ¼±¾ÌûµÄÌÔÌûר¼ÍƼö
Êé¼®ÏÂÔØÍøÕ¾ | רҵÊé¼®£¨ÍâÎİ棩WM | ºÃÊ飡ºÃ¶Á£¡ | ²ÄÁϺϳÉ001ÌÔÌû |
¸ÐÐËȤµÄÊé¼® |
» ²ÂÄãϲ»¶
ÇëÎÊÄÄÀï¿ÉÒÔÓÐÇàBÉêÇëµÄ±¾×Ó¿ÉÒÔ½è¼øÒ»Ï¡£
ÒѾÓÐ4È˻ظ´
Õæ³ÏÇóÖú£ºÊÖÀïµÄÊ¡Éç¿ÆÏîÄ¿½áÏîÒªÇóÖ÷³ÖÈËһƪÖÐÎĺËÐÄ£¬ÓÐʲôÇþµÀÄÜ·¢ºËÐÄÂð
ÒѾÓÐ6È˻ظ´
º¢×ÓÈ·ÕïÓÐÖжÈ×¢ÒâÁ¦È±ÏÝ
ÒѾÓÐ14È˻ظ´
Èý¼×»ùµâ»¯ÑÇí¿µÄÑõ»¯·´Ó¦
ÒѾÓÐ4È˻ظ´
ÇëÎÊÏ´ó¼ÒΪʲôÕâ¸öÁåľżÁª¼¸ºõ²»·´Ó¦ÄØ
ÒѾÓÐ5È˻ظ´
ÇëÎÊÓÐÆÀÖ°³Æ£¬°Ñ¿ÆÑнÌѧҵ¼¨Ëã·ÖÅÅÐòµÄ¸ßУÂð
ÒѾÓÐ5È˻ظ´
2025ÀäÞøÑ§Ê²Ã´Ê±ºò³ö½á¹û
ÒѾÓÐ3È˻ظ´
Ìì½ò¹¤Òµ´óѧ֣Áø´ºÍŶӻ¶Ó»¯Ñ§»¯¹¤¡¢¸ß·Ö×Ó»¯Ñ§»òÓлúºÏ³É·½ÏòµÄ²©Ê¿ÉúºÍ˶ʿÉú¼ÓÈë
ÒѾÓÐ4È˻ظ´
¿µ¸´´óѧ̩ɽѧÕßÖÜì÷»ÝÍŶÓÕÐÊÕ²©Ê¿Ñо¿Éú
ÒѾÓÐ6È˻ظ´
AIÂÛÎÄд×÷¹¤¾ß£ºÊÇ¿ÆÑмÓËÙÆ÷»¹ÊÇѧÊõ×÷±×Æ÷£¿
ÒѾÓÐ3È˻ظ´
Ëï?ª730
ÖÁ×ðľ³æ (ÖªÃû×÷¼Ò)
- Ó¦Öú: 537 (²©Ê¿)
- ¹ó±ö: 0.961
- ½ð±Ò: 22928.7
- Ìû×Ó: 8217
- ÔÚÏß: 2897Сʱ
- ³æºÅ: 490447
3Â¥2015-12-03 10:09:07
¼òµ¥»Ø¸´
ËüÏçÔÂÃ÷2Â¥
2015-12-02 21:52
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
bhulele4Â¥
2015-12-15 23:36
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
shadaha1255Â¥
2015-12-22 21:18
»Ø¸´
ÎåÐÇºÃÆÀ лл·ÖÏí£¡£¡£¡ ·¢×ÔСľ³æAndroid¿Í»§¶Ë
zhuerhui19796Â¥
2015-12-24 16:57
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
searcher12147Â¥
2016-03-03 05:45
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
mechtest8Â¥
2016-03-11 21:32
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
sunpixel9Â¥
2016-03-16 07:19
»Ø¸´
muzhi30910Â¥
2016-03-16 20:09
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
seaw11Â¥
2016-05-07 01:39
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
mechtest12Â¥
2016-05-14 12:38
»Ø¸´
¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
yifeng91113Â¥
2016-10-29 11:28
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
ËüÏçÔÂÃ÷14Â¥
2016-11-01 21:12
»Ø¸´
¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
supercat71215Â¥
2016-11-10 15:54
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
tigerlun16Â¥
2017-07-23 23:34
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
buaa-lee17Â¥
2017-08-11 19:26
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
ÕéÀ§ÓûÃß18Â¥
2019-09-05 11:49
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
binghexinshi19Â¥
2019-09-11 18:28
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
victorzhouy20Â¥
2020-05-05 14:07
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
pys110621Â¥
2020-06-01 21:28
»Ø¸´
ÎåÐÇºÃÆÀ ¶¥Ò»Ï£¬¸Ðл·ÖÏí£¡
jjijjj22Â¥
2021-02-17 12:37
»Ø¸´
ÎåÐÇºÃÆÀ 
























»Ø¸´´ËÂ¥