|
|
[求助]
感谢热心人啊,急切求助,万分感谢!
%%%%%3<t<8时,tau=0.7;其余时间,tau=0,下面模型是离散化的方法得到的
%%%%%%%%从理论上应该收敛到0,但是从0到586都是收敛到0的,586之后就出现一段震荡,这是怎么回事???
clc
clear
T=0.01; N=1000;%%%%%%%%%%%%%%%%%%%%%%%%不知道为何后面有一段是发散的,但是现在前面那段收敛的图形与常数单时滞的图像还是比较吻合的
x1=zeros(1,N);
x2=zeros(1,N);
x3=zeros(1,N);
x1(1)=1;
x2(1)=1;
x3(1)=1;
for i=1:300
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=301:799%%%%%%%%%在此范围内有时滞存在
tau=0.7;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=800:N
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
yy1=x1(1:588);
%yy2=x2(1:570);
%yy3=x3(1:570);
figure (100)
plot(yy1,'b-.');
%hold on;
%plot(yy2,'k');
%hold on;
%plot(yy3);
%%%%%3<t<8时,tau=0.7;其余时间,tau=0
%%%%%%%%从理论上应该收敛到0,但是从0到586都是收敛到0的,586之后就出现一段震荡,这是怎么回事???
clc
clear
T=0.01; N=1000;%%%%%%%%%%%%%%%%%%%%%%%%不知道为何后面有一段是发散的,但是现在前面那段收敛的图形与常数单时滞的图像还是比较吻合的
x1=zeros(1,N);
x2=zeros(1,N);
x3=zeros(1,N);
x1(1)=1;
x2(1)=1;
x3(1)=1;
for i=1:300
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=301:799%%%%%%%%%在此范围内有时滞存在
tau=0.7;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=800:N
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
yy1=x1(1:588);
%yy2=x2(1:570);
%yy3=x3(1:570);
figure (100)
plot(yy1,'b-.');
%hold on;
%plot(yy2,'k');
%hold on;
%plot(yy3);

%%%注意:将上面直接复制到MATLAB建立M文件会直接出结果,非常感谢啊,谢谢!!!
%%%%%3<t<8时,tau=0.7;其余时间,tau=0
%%%%%%%%从理论上应该收敛到0,但是从0到586都是收敛到0的,586之后就出现一段震荡,这是怎么回事???
clc
clear
T=0.01; N=1000;%%%%%%%%%%%%%%%%%%%%%%%%不知道为何后面有一段是发散的,但是现在前面那段收敛的图形与常数单时滞的图像还是比较吻合的
x1=zeros(1,N);
x2=zeros(1,N);
x3=zeros(1,N);
x1(1)=1;
x2(1)=1;
x3(1)=1;
for i=1:300
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=301:799%%%%%%%%%在此范围内有时滞存在
tau=0.7;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
for i=800:N
tau=0;
x1(i+1)=x1(i)+((-2*i*T-1/2)*x1(i)+x2(i)+sqrt(i*T/2)*x1(i-tau/T)-1/2*exp(i*T)*(x3(i))^3)*T;
x2(i+1)=x2(i)+(i*T*x1(i)-(3*T*i+1/2)*x2(i)+sqrt(i*T/6)*x2(i-tau/T))*T;
x3(i+1)=x3(i)+(exp(i*T)*x1(i)+sqrt(i*T)*x2(i)-(exp(i*T))*x3(i))*T;
end
yy1=x1(1:588);
%yy2=x2(1:570);
%yy3=x3(1:570);
figure (100)
plot(yy1,'b-.');
%hold on;
%plot(yy2,'k');
%hold on;
%plot(yy3); |
|