| 查看: 2907 | 回复: 80 | ||||||||||
| 【奖励】 本帖被评价72次,作者pkusiyuan增加金币 57.2 个 | ||||||||||
[资源]
Measurements and Their Uncertainties A Practical Guide to Modern Error Analysis
|
||||||||||
|
Contents 1 Errors in the physical sciences 1 1.1 The importance of error analysis 1 1.2 Uncertainties in measurement 2 1.2.1 Terminology 3 1.2.2 Random errors 3 1.2.3 Systematic errors 4 1.2.4 Mistakes 4 1.3 Precision of measurements 5 1.3.1 Precision of an analogue device 5 1.3.2 Precision of a digital device 6 1.4 Accuracy of measurements 6 Chapter summary 7 2 Random errors in measurements 9 2.1 Analysing distributions: some statistical ideas 9 2.2 The mean 9 2.3 The width of the distribution: estimating the precision 10 2.3.1 Rough-and-ready approach to estimating the width 10 2.3.2 Statistical approach to estimating the width 11 2.4 Continuous distributions 12 2.5 The normal distribution 13 2.6 Sample and parent distribution 13 2.7 The standard error 14 2.7.1 The error in the error 16 2.8 Reporting results 17 2.8.1 Rounding and significant figures 18 2.9 The five golden rules 19 Chapter summary 19 Exercises 20 3 Uncertainties as probabilities 23 3.1 Distributions and probability 23 3.2 The Gaussian probability distribution function 24 3.2.1 Probability calculations 24 3.2.2 Worked example—the error function 25 3.3 Confidence limits and error bars 25 3.3.1 Extended ranges 26 3.3.2 Rejecting outliers 26 x Contents 3.3.3 Experimental example of a Gaussian distribution 27 3.3.4 Comparing experimental results with an accepted value 28 3.4 Poisson probability function for discrete events 28 3.4.1 Worked example—Poisson counts 29 3.4.2 Error bars and confidence limits for Poisson statistics 30 3.4.3 Approximations for high means 30 3.5 The central limit theorem 31 3.5.1 Examples of the central limit theorem 33 Chapter summary 34 Exercises 35 4 Error propagation 37 4.1 Propagating the error in a single-variable function 37 4.1.1 The functional approach for single-variable functions 38 4.1.2 A calculus-based approximation for single-variable functions 38 4.1.3 Look-up table for common single-variable functions 39 4.1.4 Worked example—single variable function 39 4.2 Propagating the error through a multi-variable function 40 4.2.1 The functional approach for multi-variable functions 41 4.2.2 Worked example—functional approach for multi-variable functions 42 4.2.3 A calculus approximation for multi-variable functions 43 4.2.4 A look-up table for multi-variable functions 43 4.2.5 Comparison of methods 44 4.2.6 Percentage errors—dominant error 45 4.2.7 Using the look-up tables 45 4.2.8 Using the look-up tables—health warning 46 4.3 Propagating errors in functions—a summary 47 4.4 Experimental strategy based on error analysis 47 4.4.1 Experimental strategy for reducing the dominant error 49 4.5 Combined experiments—the weighted mean 49 4.5.1 The error in the mean—a special case of the weighted mean 50 Chapter summary 51 Exercises 51 5 Data visualisation and reduction 53 5.1 Producing a good graph 53 5.1.1 The independent and dependent variables 54 5.1.2 Linearising the data 54 5.1.3 Appropriate scales for the axes 54 5.1.4 Labelling the axes 54 5.1.5 Adding data points and error bars to graphs 55 5.1.6 Adding a fit or trend line 56 5.1.7 Adding a title or caption 57 Contents xi 5.2 Using a graph to see trends in the data 57 5.2.1 Adding a linear trend line 57 5.2.2 Interpolating, extrapolating and aliasing 59 5.3 Introduction to the method of least squares and maximum likelihood 59 5.3.1 Example using the method of least squares 61 5.4 Performing a least-squares fit to a straight line 61 5.5 Using graphs to estimate random and systematic errors 62 5.6 Residuals 63 Chapter summary 64 Exercises 64 6 Least-squares fitting of complex functions 67 6.1 The importance of χ2 in least-squares fitting 67 6.1.1 χ2 for data with Poisson errors 68 6.2 Non-uniform error bars 68 6.3 A least-squares fit to a straight line with non-uniform error bars 69 6.3.1 Strategies for a straight-line fit 71 6.3.2 Analysis of residuals with non-uniform error bars 72 6.4 Performing a weighted least-squares fit—beyond straight lines 72 6.4.1 Least-squares fit to an nth-order polynomial 72 6.4.2 Least-squares fit to an arbitrary nonlinear function 72 6.5 Calculating the errors in a least-squares fit 74 6.5.1 The error surface 74 6.5.2 Confidence limits on parameters from weighted least-squares fit 75 6.5.3 Worked example 1—a two-parameter fit 77 6.5.4 Worked example 2—a multi-parameter fit 79 6.6 Fitting with constraints 79 6.7 Testing the fit using the residuals 81 Chapter summary 82 Exercises 83 7 Computer minimisation and the error matrix 85 7.1 How do fitting programs minimise? 85 7.1.1 Iterative approaches 86 7.1.2 Grid search 86 7.1.3 The gradient-descent method 87 7.1.4 Second-order expansion: the Newton method 88 7.1.5 Second-order expansion: the Gauss–Newton method 89 7.1.6 The Marquardt–Levenberg method 90 7.2 The covariance matrix and uncertainties in fit parameters 92 7.2.1 Extracting uncertainties in fit parameters 92 7.2.2 Curvature matrix for a straight-line fit 93 7.2.3 Scaling the uncertainties 93 xii Contents 7.3 Correlations among uncertainties of fit parameters 93 7.3.1 Correlation coefficients—off-diagonal elements of the covariance matrix 93 7.4 Covariance in error propagation 95 7.4.1 Worked example 1—a straight-line fit 95 7.4.2 Worked example 2—a four-parameter fit 96 Chapter summary 97 Exercises 97 8 Hypothesis testing—how good are our models? 101 8.1 Hypothesis testing 101 8.2 Degrees of freedom 102 8.2.1 Data reduction and the number of degrees of freedom 103 8.3 The χ2 probability distribution function 104 8.3.1 χ2 for one degree of freedom 105 8.4 Using χ2 as a hypothesis test 105 8.4.1 The reduced χ2 statistic 107 8.4.2 Testing the null hypothesis—a summary 108 8.5 Testing the quality of a fit using χ2 108 8.5.1 Worked example 1—testing the quality of a fit 109 8.5.2 Worked example 2—testing different models to a data set 109 8.5.3 What constitutes a good fit? 110 8.6 Testing distributions using χ2 111 8.6.1 Worked example 3—testing a discrete distribution 112 8.6.2 Worked example 4—testing a continuous distribution 113 8.7 Occam’s razor 114 8.8 Student’s t-distribution 115 8.9 Scaling uncertainties 115 8.10 Summary of fitting experimental data to a theoretical model 116 Chapter summary 117 Exercises 118 9 Topics for further study 121 9.1 Least-squares fitting with uncertainties in both variables 121 9.1.1 Fitting to a straight line 121 9.1.2 Fitting to a more general function 122 9.1.3 Orthogonal distance regression 122 9.2 More complex error surfaces 123 9.2.1 Simulated annealing 123 9.2.2 Genetic algorithms 124 9.3 Monte Carlo methods 125 9.3.1 Introduction to Monte Carlo methods 125 9.3.2 Testing distributions with Monte Carlo methods 125 9.4 Bootstrap methods 126 Contents xiii 9.5 Bayesian inference 127 9.6 GUM—Guide to the Expression of Uncertainty in Measurement 129 Bibliography 131 Index 133 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Hughes,Hase_-_Measurements_and_Their_Uncertainties_A_Practical_Guide_to_Modern_Error_Analysis._Oxford_University_Press._2010.pdf
2015-05-02 19:53:11, 2.86 M
» 收录本帖的淘帖专辑推荐
书籍下载网站 | 专业书籍(外文版)WM | Allen的英文原版+百科 | 专业书籍之数学力学WM |
电化学&有机合成 | 专业书籍 | Allen的物理 |
» 猜你喜欢
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有7人回复
申请2026年博士
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有5人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有6人回复
2025冷门绝学什么时候出结果
已经有7人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
40楼2015-05-06 18:27:28
简单回复
2015-05-02 21:25
回复
五星好评 顶一下,感谢分享!
ha16683楼
2015-05-03 01:06
回复
五星好评 顶一下,感谢分享!
吠陀4楼
2015-05-03 06:44
回复
五星好评 顶一下,感谢分享!
2015-05-03 07:35
回复
五星好评 顶一下,感谢分享!
wjy20116楼
2015-05-03 09:30
回复
五星好评 顶一下,感谢分享!
kuangpan7楼
2015-05-03 10:13
回复
五星好评 顶一下,感谢分享!
xcontext8楼
2015-05-03 10:45
回复
五星好评 顶一下,谢谢分享! [ 发自小木虫客户端 ]
zym10039楼
2015-05-03 11:46
回复
五星好评 顶一下,感谢分享!
einstein63310楼
2015-05-03 15:19
回复
五星好评 顶一下,感谢分享!
wangth092111楼
2015-05-03 15:27
回复
五星好评 顶一下,感谢分享!
supervb12楼
2015-05-03 15:53
回复
五星好评 顶一下,感谢分享!
花尽无花13楼
2015-05-03 21:30
回复
五星好评 顶一下,感谢分享!
lxw20214楼
2015-05-04 06:12
回复
五星好评 顶一下,感谢分享!
supervb15楼
2015-05-04 07:16
回复
顶一下,感谢分享!
淸比金坚16楼
2015-05-04 07:53
回复
五星好评 顶一下,感谢分享!
tjdht17楼
2015-05-04 13:30
回复
五星好评 顶一下,感谢分享!
licro18楼
2015-05-04 15:18
回复
五星好评 顶一下,感谢分享!
rockqu19楼
2015-05-04 15:40
回复
五星好评 顶一下,感谢分享!
pys110620楼
2015-05-04 17:30
回复
五星好评 顶一下,感谢分享!
化催小虫21楼
2015-05-04 19:52
回复
五星好评 顶一下,感谢分享!
xshk22楼
2015-05-04 21:33
回复
五星好评 顶一下,感谢分享!
xieyue120323楼
2015-05-05 11:44
回复
五星好评 顶一下,感谢分享!
muxinjin24楼
2015-05-05 12:25
回复
五星好评 顶一下,感谢分享!
truebelief25楼
2015-05-05 12:28
回复
五星好评 顶一下,感谢分享!
1314168apple26楼
2015-05-05 13:08
回复
五星好评 顶一下,感谢分享!
redmoonzpc27楼
2015-05-05 14:41
回复
五星好评 顶一下,感谢分享!
zhchzhsh207628楼
2015-05-05 15:34
回复
五星好评 顶一下,感谢分享!
1093129楼
2015-05-05 18:45
回复
五星好评 顶一下,感谢分享!
oliverz2y30楼
2015-05-05 18:58
回复
五星好评 顶一下,感谢分享!
lixi26031楼
2015-05-05 19:44
回复
五星好评 顶一下,感谢分享!
psylhh32楼
2015-05-05 20:40
回复
五星好评 顶一下,感谢分享!
guli052033楼
2015-05-05 21:39
回复
五星好评 顶一下,感谢分享!
applysue34楼
2015-05-05 22:01
回复
三星好评 顶一下,感谢分享!
lxw20235楼
2015-05-05 23:24
回复
顶一下,感谢分享!
parkzhu36楼
2015-05-06 00:47
回复
五星好评 顶一下,感谢分享!
chemphys37楼
2015-05-06 12:32
回复
五星好评 顶一下,感谢分享!
得意地笑38楼
2015-05-06 15:01
回复
五星好评 顶一下,感谢分享!
shchcui39楼
2015-05-06 17:32
回复
五星好评 顶一下,感谢分享!
chilong620141楼
2015-05-06 21:30
回复
五星好评 顶一下,感谢分享!
jtkdpangzi42楼
2015-05-06 22:28
回复
五星好评 顶一下,感谢分享!
2015-05-07 07:47
回复
五星好评 顶一下,感谢分享!
yyangpp44楼
2015-05-12 21:43
回复
五星好评 顶一下,感谢分享!
wenhsien45楼
2015-05-15 07:01
回复
五星好评 顶一下,感谢分享!
Dirac201046楼
2015-05-16 11:12
回复
五星好评 顶一下,感谢分享!
yyangpp47楼
2015-08-02 15:31
回复
顶一下,感谢分享!
attractor48楼
2015-08-02 21:32
回复
顶一下,感谢分享!
jacob宝49楼
2015-08-02 22:35
回复
五星好评 顶一下,感谢分享!
75287929050楼
2015-09-01 21:56
回复
五星好评 顶一下,感谢分享!













回复此楼