24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1454  |  回复: 13
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

丁歌丁歌

铜虫 (初入文坛)

[求助] 较复杂非线性方程组的求解已有4人参与

M1 =
  (5783174925599813/8796093022208-x)^2+(6677835200131491/17592186044416-y)^2+(4407961823293091/140737488355328+z)^2-640000
   (2193125870769989/4398046511104-x)^2+(5064807247423141/17592186044416-y)^2+(3804844200179341/8796093022208+z)^2-640000
   (5407472257437835/8796093022208-x)^2+(6244011126934333/17592186044416-y)^2+(2112013431096937/8796093022208+z)^2-640000
       (1285773233509565/2199023255552-x)^2+(2969366089934251/8796093022208-y)^2+(42275521418361/137438953472+z)^2-640000
     (5759826468939127/8796093022208-x)^2+(207839835145471/549755813888-y)^2+(4795733439041217/70368744177664+z)^2-640000
     (5648298304726199/8796093022208-x)^2+(3261046546696977/8796093022208-y)^2+(650635942337429/4398046511104+z)^2-640000
     (1267202150272185/2199023255552-x)^2+(5852956020618547/17592186044416-y)^2+(177773328700423/549755813888+z)^2-640000
    (3580379326609631/8796093022208-x)^2+(2067132968019041/8796093022208-y)^2+(4518596692757541/8796093022208+z)^2-640000
   (5709705960125659/8796093022208-x)^2+(3296500273072159/8796093022208-y)^2+(3925174893221049/35184372088832+z)^2-640000
  (5038170479836271/8796093022208-x)^2+(5817578165513393/17592186044416-y)^2+(5797847150696299/17592186044416+z)^2-640000

M2 =
   (-1355938819570883/2199023255552-x)^2+(1565703284967825/4398046511104-y)^2+(2068422157830571/8796093022208+z)^2-640000
(-2840672614217935/4398046511104-x)^2+(6560252393993289/17592186044416-y)^2+(4563339560142537/35184372088832+z)^2-640000
      (-1443523656750521/2199023255552-x)^2+(416709385903253/1099511627776-y)^2+(53954671811083/1099511627776+z)^2-640000
   (-2809361278785231/4398046511104-x)^2+(405496372639391/1099511627776-y)^2+(2857613719861201/17592186044416+z)^2-640000
  (-4191784830613881/8796093022208-x)^2+(4840256200679827/17592186044416-y)^2+(2004306410360237/4398046511104+z)^2-640000
  (-4932489824004307/8796093022208-x)^2+(5695548655327951/17592186044416-y)^2+(1538279606165995/4398046511104+z)^2-640000
(-2889487282786947/4398046511104-x)^2+(6672985042148175/17592186044416-y)^2+(2850970828312827/70368744177664+z)^2-640000
  (-5772113003425535/8796093022208-x)^2+(3332530996320671/8796093022208-y)^2+(1834675543414761/35184372088832+z)^2-640000
  (-2472590749753697/4398046511104-x)^2+(5710203739864301/17592186044416-y)^2+(1528014620121339/4398046511104+z)^2-640000
     (-360068163101929/549755813888-x)^2+(831541803574051/2199023255552-y)^2+(4692463778095165/70368744177664+z)^2-640000

M3 =
   x^2+(-1079567710965999/2199023255552-y)^2+(2201155128118405/4398046511104+z)^2-640000
x^2+(-5518840907333343/8796093022208-y)^2+(6618005143311151/17592186044416+z)^2-640000
x^2+(-6584339386912691/8796093022208-y)^2+(8208052299551497/70368744177664+z)^2-640000
  x^2+(-2046630217513715/4398046511104-y)^2+(4543090323590701/8796093022208+z)^2-640000
  x^2+(-2340386485076215/4398046511104-y)^2+(4139869062007889/8796093022208+z)^2-640000
x^2+(-4950158330969807/8796093022208-y)^2+(7823640157530899/17592186044416+z)^2-640000
  x^2+(-4933562730030649/8796093022208-y)^2+(3926786237532717/8796093022208+z)^2-640000
  x^2+(-779655070654957/1099511627776-y)^2+(8509804586042389/35184372088832+z)^2-640000
x^2+(-5224936413316441/8796093022208-y)^2+(7288312520849641/17592186044416+z)^2-640000
x^2+(-1233485796969173/2199023255552-y)^2+(7852889119009017/17592186044416+z)^2-640000
M1中10个元素结果都是0,M2 M3也都是0。M1 M2 M3每个中任取一个元素就构成一个方程组并能解出x y z.一共1000种取法就是1000个x y z。然后把这1000个点画出来


该怎么编程呢,想一星期了没想出来
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

supervb

铁杆木虫 (文坛精英)

【答案】应助回帖

★ ★ ★
感谢参与,应助指数 +1
丁歌丁歌: 金币+3, 有帮助 2015-04-23 14:38:26
用最小二乘法列式本质上就是想求最优解吧?直接上Matlab的优化工具箱不就得了,退火算法、遗传算法任选,何苦解这个方程组。
咱是做非线性随机动力学的哟
4楼2015-04-07 07:24:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

supervb

铁杆木虫 (文坛精英)

引用回帖:
9楼: Originally posted by 戴钢盔的猪头 at 2015-04-07 11:43:49
这个问题能够用传统优化算法的,为什么要用全局搜索?不仅耗时精度还低,不要误导别人。
...

你先证明这个不是多解问题,才能说什么用传统方法,不然掉到局部最优解就等着坐蜡吧!
现在楼主已经试过了,没解出来,那么换智能算法有什么不行呢?再说这就是3个变量的搜索问题,你竟然认为耗时?
精度可以在迭代控制误差中人为设定,哪有什么精度低的问题!
我6个变量的都用退火算法算过,比传统方法的精度还高好不好!
咱是做非线性随机动力学的哟
10楼2015-04-07 15:06:58
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

supervb

铁杆木虫 (文坛精英)

引用回帖:
11楼: Originally posted by 戴钢盔的猪头 at 2015-04-07 22:53:42
两个字,呵呵
...

朽木不可雕也...
咱是做非线性随机动力学的哟
12楼2015-04-08 07:58:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 丁歌丁歌 的主题更新
信息提示
请填处理意见