| 查看: 949 | 回复: 5 | ||
| 【奖励】 本帖被评价4次,作者littlewing2007增加金币 3.5 个 | ||
| 当前主题已经存档。 | ||
[资源]
(Blackwell, 2007) Inductively Coupled Plasma Spectrometry and Its Applications
|
||
|
Inductively Coupled Plasma Spectrometry and its Applications Edited by Steve J. Hill School of Earth, Ocean and Environmental Sciences University of Plymouth Plymouth, UK 下载地址 Contents Contributors xv Preface xix 1 Introduction – A Forward-Looking Perspective Gary M. Hieftje 1 1.1 Introduction 1 1.2 Extrapolation of past and current trends 2 1.2.1 Influences from science and technology 2 1.2.2 Influences from society, politics, and the economy 4 1.2.3 Past and current trends in atomic spectrometry 5 1.3 Influence of technology transfer 6 1.3.1 Electronics and data manipulation 6 1.3.2 Metal-binding structures 7 1.3.3 Novel separation methods 7 1.3.4 Detector technologies 8 1.4 Strengths and weaknesses of ICP-AES and ICP-MS 8 1.4.1 Strengths and weaknesses of ICP-AES 10 1.4.2 Strengths and weaknesses of ICP-MS 12 1.4.3 ICP limitations 13 1.5 Potential directions in ICP spectrometry 15 1.6 Concluding considerations 21 References 22 2 Fundamental Principles of Inductively Coupled Plasmas 27 Jean-Michel Mermet 2.1 Principles to inductively coupled plasma generation 27 2.2 Equilibrium in a plasma 29 2.3 Line intensities 31 2.4 Line profiles 32 2.5 Temperature definitions 34 2.6 Temperature measurements 35 2.6.1 Kinetic temperature measurement 35 2.6.2 Rotational temperature measurement 36 2.6.3 Excitation temperature 38 2.6.3.1 Boltzmann plot 39 2.6.3.2 Line pair method 40 2.6.4 Electron temperature 41 2.7 Electron number density measurement 42 2.8 Ionic to atomic line intensity ratio 43 2.9 Active methods 44 2.9.1 Laser-induced fluorescence 45 2.9.2 Light scattering 45 2.10 Spatial profiles 46 2.11 Temperature and electron number densities observed in analytical ICPs 47 2.12 Plasma perturbation 48 2.13 Multiline diagnostics 49 References 50 3 Basic Concepts and Instrumentation for Plasma Spectrometry Steve J. Hill, Andrew Fisher and Michael Foulkes 61 3.1 Detection limits and sensitivity 61 3.1.1 ICP-Atomic emission spectrometry 61 3.1.2 Limits of detection 64 3.1.3 Axial systems 64 3.1.4 The sample introduction system 65 3.1.5 Detectors 66 3.2 Accuracy and precision 68 3.2.1 Instrumental drift 69 3.2.2 Matrix effects 70 3.2.3 Plasma effects 70 3.2.4 Spectral effects, interferences and background correction 71 3.2.5 Dynamic range 71 3.2.6 ICP-MS 72 3.3 Multi-element capability and selectivity 73 3.4 Instrumental overview 73 3.5 Radio-frequency generators 74 3.6 Torches 76 3.7 Spectrometers 79 3.7.1 Line isolation 79 3.7.2 Monochromators 81 3.7.3 Polychromators 82 vi Contents 3.8 Detectors 84 3.8.1 Photomultiplier tubes 84 3.8.2 Solid-state detectors 85 3.9 Nebulisers and spray chambers 86 3.10 Read-out devices, instrument control and data processing 87 3.11 Radial and axial plasmas 88 3.12 Instrumentation for high-resolution spectrometry 90 3.13 Micro-plasmas and plasma on a chip 90 References 93 4 Aerosol Generation and Sample Transport Barry L. Sharp and Ciaran O’Connor 98 4.1 Introduction 98 4.2 Sample introduction characteristics of the ICP source 98 4.2.1 Particle size distribution 98 4.2.2 Plasma loading 99 4.3 Liquid aerosol generation 101 4.3.1 Pneumatic nebulization 101 4.3.1.1 Pneumatic nebulizer designs 102 4.3.1.2 Ultrasonic nebulizers 105 4.3.1.3 Alternative nebulizer designs 107 4.3.2 Spray chambers 108 4.3.2.1 Mode of operation 108 4.3.2.2 Practical designs of spray chambers 109 4.3.2.3 Desolvation 111 4.3.3 Chromatographic interfaces 112 4.4 Vapour generation 113 4.5 Electrothermal vaporization 114 4.6 Solid sampling via LA 115 4.6.1 Fundamentals 115 4.6.1.1 Ablation mechanisms 115 4.6.1.2 Elemental fractionation 116 4.6.2 Instrumentation 116 4.6.2.1 The laser 117 4.6.2.2 The ablation chamber and transport system 118 4.6.3 Sampling strategy 119 4.6.4 Quantification of LA-ICP-MS 119 4.7 Conclusion 120 References 121 5 Fundamental Aspects of Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) Gavin O’Connor and E. Hywel Evans 134 5.1 The ICP as an ion source 134 5.2 Ion sampling 136 5.2.1 Ion sampling interface 137 5.2.2 Ion focusing 140 Contents vii 5.2.3 Langmuir probe measurements 141 5.2.4 Ion kinetic energies 141 5.3 Mass analysers 142 5.3.1 Quadrupole 143 5.3.2 Magnetic sector 144 5.3.3 Double-focusing sector mass analyzer 145 5.3.4 Time of flight 146 5.3.5 Ion trap 149 5.4 Ion detection 150 5.4.1 Faraday cup collector 150 5.4.2 Electron multiplier 151 5.4.2.1 Continuous dynode 151 5.4.2.2 Discrete dynode 152 5.4.3 Channel plate 153 5.5 Instrumentation for interference removal 153 5.5.1 Cool plasma operation 153 5.5.2 Multiple reaction cell 154 5.5.3 Kinetic energy discrimination 156 References 157 6 Use of ICP-MS for Isotope Ratio Measurements Frank Vanhaecke, Lieve Balcaen and Philip Taylor 160 6.1 Introduction 160 6.2 Fundamentals 160 6.2.1 Isotope ratios: general concepts 160 6.2.2 ICP-MS vs TIMS for isotope ratio measurements 164 6.3 Different sources of uncertainty affecting isotope ratios when measured using ICP-MS 170 6.3.1 Uncertainty according to International Standards Organisation–International Bureau of Weights and Measures 170 6.3.2 Sources of noise 171 6.3.3 Sources of bias 171 6.3.3.1 Mass discrimination 172 6.3.3.2 Mass scale shift 174 6.3.3.3 Background and contamination 174 6.3.3.4 Detector dead time 176 6.3.4 Optimisation of data acquisition parameters in terms of isotope ratio precision 178 6.4 ID: general concepts 178 6.4.1 Principle 179 6.4.2 Advantages and pitfalls 181 6.4.3 Optimum sample to spike mixing ratios 182 6.4.4 Spike calibration 182 6.4.5 Blank correction 183 6.4.6 ICP-IDMS: metrological and non-metrological mode of application 184 viii Contents 6.5 Selected applications 184 6.5.1 Introduction 184 6.5.2 Isotope dilution 185 6.5.2.1 ICP-IDMS for certification purposes/ metrological and non-metrological use of ICP-IDMS 185 6.5.2.2 ICP-IDMS combined with the application of matrix/trace separation procedures 186 6.5.2.3 Radioanalytical applications of ICP-IDMS 188 6.5.2.4 ICP-IDMS in connection with direct solid sampling 190 6.5.2.5 ICP-IDMS in elemental speciation 192 6.5.3 Tracer studies 197 6.5.3.1 Tracer studies for investigating (human) metabolism and element toxicity 197 6.5.4 Determination of natural isotope ratios 202 6.5.4.1 Geochronology and other application in the geosciences 202 6.5.4.2 Archaeometric and archaeological applications 206 6.5.4.3 Provenance determination of agricultural products 210 6.5.4.4 Environmental applications 211 6.5.4.5 Biological applications 214 6.6 General conclusions 215 References 215 7 Alternative and Mixed Gas Plasmas Andrew Fisher and Steve J. Hill 226 7.1 Introduction 226 7.2 Ionization effects 229 7.3 Thermal conductivity 231 7.4 Use of alternative gases (mixed gas plasmas) in ICP-OES 232 7.4.1 Introduction of nitrogen 232 7.4.2 Introduction of hydrogen 233 7.4.3 Introduction of hydrocarbon gases 234 7.4.4 Introduction of halocarbon gases 234 7.4.5 Introduction of oxygen 234 7.4.6 Introduction of helium and other nobel gases 235 7.4.7 Air plasmas for ICP-AES 236 7.4.8 Carbon dioxide plasmas 236 7.4.9 Multiple gas plasmas 237 7.5 Mixed gas plasmas for use with ICP-MS 237 7.5.1 Introduction of nitrogen 238 7.5.2 Introduction of hydrogen 239 7.5.3 Introduction of hydrocarbon gases 240 7.5.4 Introduction of oxygen 240 7.5.5 Introduction of helium and other nobel gases 241 7.5.6 Air plasmas for ICP-MS 242 Contents ix 7.6 Low-pressure plasmas 242 7.7 Low-power plasmas 245 7.8 Conclusions 245 References 245 8 Electrospray Ionization Mass Spectrometry: A Complementary Source for Trace Element Speciation Analysis Helle R. Hansen and Spiros A. Pergantis 251 8.1 Introduction 251 8.1.1 Historical aspects of ES-MS 252 8.1.2 The role of ES-MS in biomolecule analysis 253 8.2 Mechanistic aspects of electrospray ionization 254 8.2.1 Formation of charged droplets 254 8.2.2 Electrospray sources 256 8.2.3 Droplet disintegration 257 8.2.4 Gas-phase ion formation 258 8.2.5 Sampling electrosprayed ions 259 8.3 Mass analysers used with ES 259 8.3.1 Quadrupole: time-of-flight analysers 259 8.3.2 Quadrupole: ion trap mass analyser 261 8.4 Element speciation using ES-MS 262 8.4.1 Arsenic 262 8.4.1.1 Recognizing As-containing peaks by ES-MS 262 8.4.1.2 Parallel HPLC-ICP-MS and single quadrupole HPLC-ES-MS 263 8.4.1.3 Application of ES-MS/MS for identification of As species in crude matrices 264 8.4.2 Selenium 265 8.4.2.1 Recognizing Se-containing peaks by ES-MS 266 8.4.2.2 Parallel HPLC-ICP-MS and HPLC-ES single quadrupole MS 266 8.4.2.3 ES-MS/MS analysis after chromatographic purification (heart-cutting) 267 8.4.2.4 Parallel HPLC-ICP-MS and HPLC-ES-MS/MS analysis 267 8.4.2.5 Selenium-containing proteins 267 8.4.3 Antimony 269 8.4.3.1 Recognizing Sb-containing peaks by ES-MS 269 8.4.3.2 Sb interaction with biomolecules 270 8.4.3.3 Complexation behaviour of Sb 270 8.4.4 Tin 271 8.4.4.1 Recognizing Sn-containing peaks by ES-MS 271 8.5 Conclusions 273 References 273 x Contents 9 Geological Applications of Plasma Spectrometry Douglas L.Miles and Jennifer M. Cook 277 9.1 Introduction 277 9.2 Sampling and sample preparation 279 9.2.1 Sampling 279 9.2.2 Sample preparation 281 9.2.2.1 Comminution 281 9.2.2.2 Sample decomposition and dissolution 283 9.2.2.2.1 Decomposition with acids 284 9.2.2.2.2 Decomposition by fusion 286 9.2.2.2.3 Microwave-assisted decomposition 287 9.2.2.2.4 Selective extraction schemes 289 9.3 Determination of major elements 290 9.4 Determination of trace elements 291 9.5 Determination of the rare earth and other incompatible trace elements 293 9.5.1 Background 293 9.5.2 Determination of the REEs by ICP-AES 294 9.5.3 Determination of the REEs by ICP-MS 295 9.5.4 Determination of other incompatible elements 297 9.6 Determination of gold and the PGEs 299 9.7 Measurement of isotope ratios 302 9.8 Laser ablation 304 9.8.1 Analysis of fluid inclusions 310 9.8.2 In situ determination of isotope ratios 311 9.9 Future trends 312 References 315 10 Environmental and Clinical Applications of Inductively Coupled Plasma Spectrometry Anne P. Vonderheide, Baki B.M. Sadi, Karen L. Sutton, Jodi R. Shann and Joseph A. Caruso 338 10.1 Introduction 338 10.2 Analysis of air 339 10.2.1 Introduction 339 10.2.2 Sampling 339 10.2.3 Sample preparation 340 10.2.4 Interferences 340 10.2.5 Applications 341 10.3 Analysis of water 341 10.3.1 Introduction 341 10.3.2 Sample collection and preparation 343 10.3.3 Sample clean-up and interference removal 343 10.3.4 Preconcentration 344 10.3.5 Hydride generation 344 Contents xi 10.3.6 Elemental speciation studies 345 10.3.7 Analysis of non-metals 346 10.4 Analysis of clinical samples 348 10.4.1 Introduction 348 10.4.2 Single element/multi-element 349 10.4.3 Types of mass spectrometers in use 349 10.4.4 Sample introduction 355 10.4.5 Speciation of elements 356 10.5 Conclusions 361 References 361 11 Applications of Plasma Spectrometry in Food Science Helen M. Crews, Paul Robb and Malcolm J. Baxter 387 11.1 Introduction 387 11.2 Analytical challenges 388 11.2.1 Isobaric overlap in ICP-MS 388 11.2.2 Polyatomic and doubly charged species interferences in ICP-MS 389 11.2.3 Ionization interferences in ICP-MS 391 11.2.4 Interferences in ICP-AES 392 11.2.5 Other sources of error 392 11.3 Sample collection and storage 393 11.3.1 Uncertainty associated with sampling 393 11.4 Sample preparation 393 11.4.1 Liquid foods 394 11.4.2 Meat 394 11.4.3 Fish and shellfish 394 11.4.4 Vegetables 395 11.4.5 Fruits 395 11.4.6 Fats and oils 395 11.4.7 Cereals 396 11.4.8 Mixed fruit/whole meals/diets 396 11.5 Sample pre-treatment 396 11.5.1 Samples requiring minimal pre-treatment 396 11.5.2 Digestion of foods and related samples with acid(s) 397 11.5.3 Other techniques 398 11.5.4 Pre-concentration methods and removal of interferences 399 11.6 Quantification 399 11.6.1 Practical considerations 400 11.6.2 Diet analysis 400 11.6.3 Isotope ratio measurements 401 11.7 Quality control 401 11.7.1 General observations 403 11.7.2 Instrument performance 403 11.7.3 Limits of detection 403 xii Contents 11.7.4 Spike and reference material recoveries 405 11.7.5 Replicate analyses 406 11.7.6 Reporting results 406 11.8 Speciation studies 406 11.8.1 Arsenic speciation 406 11.8.2 Applications using HPLC 407 11.8.3 Selenium speciation 409 11.9 Future trends 412 References 413 Index 423 |
» 猜你喜欢
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
假如你的研究生提出不合理要求
已经有5人回复
所感
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有28人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
实验室接单子
已经有3人回复
磺酰氟产物,毕不了业了!
已经有8人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
2楼2008-06-04 21:03:27
3楼2008-06-04 23:41:30
4楼2008-06-05 08:52:02
5楼2008-06-06 12:32:57
6楼2008-06-06 15:06:35












回复此楼
