24小时热门版块排行榜    

查看: 951  |  回复: 5
【奖励】 本帖被评价4次,作者littlewing2007增加金币 3.5
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

littlewing2007

铜虫 (小有名气)


[资源] (Blackwell, 2007) Inductively Coupled Plasma Spectrometry and Its Applications

Inductively Coupled Plasma Spectrometry and its Applications

Edited by
Steve J. Hill

School of Earth, Ocean and Environmental Sciences
University of Plymouth
Plymouth, UK


下载地址





Contents
Contributors xv
Preface xix
1 Introduction – A Forward-Looking Perspective Gary M. Hieftje 1
1.1 Introduction 1
1.2 Extrapolation of past and current trends 2
1.2.1 Influences from science and technology 2
1.2.2 Influences from society, politics, and the economy 4
1.2.3 Past and current trends in atomic spectrometry 5
1.3 Influence of technology transfer 6
1.3.1 Electronics and data manipulation 6
1.3.2 Metal-binding structures 7
1.3.3 Novel separation methods 7
1.3.4 Detector technologies 8
1.4 Strengths and weaknesses of ICP-AES and ICP-MS 8
1.4.1 Strengths and weaknesses of ICP-AES 10
1.4.2 Strengths and weaknesses of ICP-MS 12
1.4.3 ICP limitations 13
1.5 Potential directions in ICP spectrometry 15
1.6 Concluding considerations 21
References 22
2 Fundamental Principles of Inductively Coupled Plasmas 27
Jean-Michel Mermet
2.1 Principles to inductively coupled plasma generation 27
2.2 Equilibrium in a plasma 29
2.3 Line intensities 31
2.4 Line profiles 32
2.5 Temperature definitions 34
2.6 Temperature measurements 35
2.6.1 Kinetic temperature measurement 35
2.6.2 Rotational temperature measurement 36
2.6.3 Excitation temperature 38
2.6.3.1 Boltzmann plot 39
2.6.3.2 Line pair method 40
2.6.4 Electron temperature 41
2.7 Electron number density measurement 42
2.8 Ionic to atomic line intensity ratio 43
2.9 Active methods 44
2.9.1 Laser-induced fluorescence 45
2.9.2 Light scattering 45
2.10 Spatial profiles 46
2.11 Temperature and electron number densities observed in
analytical ICPs 47
2.12 Plasma perturbation 48
2.13 Multiline diagnostics 49
References 50
3 Basic Concepts and Instrumentation for Plasma Spectrometry
Steve J. Hill, Andrew Fisher and Michael Foulkes 61
3.1 Detection limits and sensitivity 61
3.1.1 ICP-Atomic emission spectrometry 61
3.1.2 Limits of detection 64
3.1.3 Axial systems 64
3.1.4 The sample introduction system 65
3.1.5 Detectors 66
3.2 Accuracy and precision 68
3.2.1 Instrumental drift 69
3.2.2 Matrix effects 70
3.2.3 Plasma effects 70
3.2.4 Spectral effects, interferences and background correction 71
3.2.5 Dynamic range 71
3.2.6 ICP-MS 72
3.3 Multi-element capability and selectivity 73
3.4 Instrumental overview 73
3.5 Radio-frequency generators 74
3.6 Torches 76
3.7 Spectrometers 79
3.7.1 Line isolation 79
3.7.2 Monochromators 81
3.7.3 Polychromators 82
vi Contents
3.8 Detectors 84
3.8.1 Photomultiplier tubes 84
3.8.2 Solid-state detectors 85
3.9 Nebulisers and spray chambers 86
3.10 Read-out devices, instrument control and data processing 87
3.11 Radial and axial plasmas 88
3.12 Instrumentation for high-resolution spectrometry 90
3.13 Micro-plasmas and plasma on a chip 90
References 93
4 Aerosol Generation and Sample Transport Barry L. Sharp and
Ciaran O’Connor 98
4.1 Introduction 98
4.2 Sample introduction characteristics of the ICP source 98
4.2.1 Particle size distribution 98
4.2.2 Plasma loading 99
4.3 Liquid aerosol generation 101
4.3.1 Pneumatic nebulization 101
4.3.1.1 Pneumatic nebulizer designs 102
4.3.1.2 Ultrasonic nebulizers 105
4.3.1.3 Alternative nebulizer designs 107
4.3.2 Spray chambers 108
4.3.2.1 Mode of operation 108
4.3.2.2 Practical designs of spray chambers 109
4.3.2.3 Desolvation 111
4.3.3 Chromatographic interfaces 112
4.4 Vapour generation 113
4.5 Electrothermal vaporization 114
4.6 Solid sampling via LA 115
4.6.1 Fundamentals 115
4.6.1.1 Ablation mechanisms 115
4.6.1.2 Elemental fractionation 116
4.6.2 Instrumentation 116
4.6.2.1 The laser 117
4.6.2.2 The ablation chamber and transport system 118
4.6.3 Sampling strategy 119
4.6.4 Quantification of LA-ICP-MS 119
4.7 Conclusion 120
References 121
5 Fundamental Aspects of Inductively Coupled Plasma–Mass
Spectrometry (ICP-MS) Gavin O’Connor and E. Hywel Evans 134
5.1 The ICP as an ion source 134
5.2 Ion sampling 136
5.2.1 Ion sampling interface 137
5.2.2 Ion focusing 140
Contents vii
5.2.3 Langmuir probe measurements 141
5.2.4 Ion kinetic energies 141
5.3 Mass analysers 142
5.3.1 Quadrupole 143
5.3.2 Magnetic sector 144
5.3.3 Double-focusing sector mass analyzer 145
5.3.4 Time of flight 146
5.3.5 Ion trap 149
5.4 Ion detection 150
5.4.1 Faraday cup collector 150
5.4.2 Electron multiplier 151
5.4.2.1 Continuous dynode 151
5.4.2.2 Discrete dynode 152
5.4.3 Channel plate 153
5.5 Instrumentation for interference removal 153
5.5.1 Cool plasma operation 153
5.5.2 Multiple reaction cell 154
5.5.3 Kinetic energy discrimination 156
References 157
6 Use of ICP-MS for Isotope Ratio Measurements Frank Vanhaecke,
Lieve Balcaen and Philip Taylor 160
6.1 Introduction 160
6.2 Fundamentals 160
6.2.1 Isotope ratios: general concepts 160
6.2.2 ICP-MS vs TIMS for isotope ratio measurements 164
6.3 Different sources of uncertainty affecting isotope ratios
when measured using ICP-MS 170
6.3.1 Uncertainty according to International Standards
Organisation–International Bureau of Weights
and Measures 170
6.3.2 Sources of noise 171
6.3.3 Sources of bias 171
6.3.3.1 Mass discrimination 172
6.3.3.2 Mass scale shift 174
6.3.3.3 Background and contamination 174
6.3.3.4 Detector dead time 176
6.3.4 Optimisation of data acquisition parameters
in terms of isotope ratio precision 178
6.4 ID: general concepts 178
6.4.1 Principle 179
6.4.2 Advantages and pitfalls 181
6.4.3 Optimum sample to spike mixing ratios 182
6.4.4 Spike calibration 182
6.4.5 Blank correction 183
6.4.6 ICP-IDMS: metrological and non-metrological
mode of application 184
viii Contents
6.5 Selected applications 184
6.5.1 Introduction 184
6.5.2 Isotope dilution 185
6.5.2.1 ICP-IDMS for certification purposes/
metrological and non-metrological use
of ICP-IDMS 185
6.5.2.2 ICP-IDMS combined with the application of
matrix/trace separation procedures 186
6.5.2.3 Radioanalytical applications of ICP-IDMS 188
6.5.2.4 ICP-IDMS in connection with direct solid
sampling 190
6.5.2.5 ICP-IDMS in elemental speciation 192
6.5.3 Tracer studies 197
6.5.3.1 Tracer studies for investigating (human)
metabolism and element toxicity 197
6.5.4 Determination of natural isotope ratios 202
6.5.4.1 Geochronology and other application in
the geosciences 202
6.5.4.2 Archaeometric and archaeological applications 206
6.5.4.3 Provenance determination of agricultural
products 210
6.5.4.4 Environmental applications 211
6.5.4.5 Biological applications 214
6.6 General conclusions 215
References 215
7 Alternative and Mixed Gas Plasmas Andrew Fisher and Steve J. Hill 226
7.1 Introduction 226
7.2 Ionization effects 229
7.3 Thermal conductivity 231
7.4 Use of alternative gases (mixed gas plasmas) in ICP-OES 232
7.4.1 Introduction of nitrogen 232
7.4.2 Introduction of hydrogen 233
7.4.3 Introduction of hydrocarbon gases 234
7.4.4 Introduction of halocarbon gases 234
7.4.5 Introduction of oxygen 234
7.4.6 Introduction of helium and other nobel gases 235
7.4.7 Air plasmas for ICP-AES 236
7.4.8 Carbon dioxide plasmas 236
7.4.9 Multiple gas plasmas 237
7.5 Mixed gas plasmas for use with ICP-MS 237
7.5.1 Introduction of nitrogen 238
7.5.2 Introduction of hydrogen 239
7.5.3 Introduction of hydrocarbon gases 240
7.5.4 Introduction of oxygen 240
7.5.5 Introduction of helium and other nobel gases 241
7.5.6 Air plasmas for ICP-MS 242
Contents ix
7.6 Low-pressure plasmas 242
7.7 Low-power plasmas 245
7.8 Conclusions 245
References 245
8 Electrospray Ionization Mass Spectrometry: A Complementary
Source for Trace Element Speciation Analysis Helle R. Hansen and
Spiros A. Pergantis 251
8.1 Introduction 251
8.1.1 Historical aspects of ES-MS 252
8.1.2 The role of ES-MS in biomolecule analysis 253
8.2 Mechanistic aspects of electrospray ionization 254
8.2.1 Formation of charged droplets 254
8.2.2 Electrospray sources 256
8.2.3 Droplet disintegration 257
8.2.4 Gas-phase ion formation 258
8.2.5 Sampling electrosprayed ions 259
8.3 Mass analysers used with ES 259
8.3.1 Quadrupole: time-of-flight analysers 259
8.3.2 Quadrupole: ion trap mass analyser 261
8.4 Element speciation using ES-MS 262
8.4.1 Arsenic 262
8.4.1.1 Recognizing As-containing peaks by ES-MS 262
8.4.1.2 Parallel HPLC-ICP-MS and single
quadrupole HPLC-ES-MS 263
8.4.1.3 Application of ES-MS/MS for
identification of As species in crude matrices 264
8.4.2 Selenium 265
8.4.2.1 Recognizing Se-containing peaks by ES-MS 266
8.4.2.2 Parallel HPLC-ICP-MS and HPLC-ES single
quadrupole MS 266
8.4.2.3 ES-MS/MS analysis after chromatographic
purification (heart-cutting) 267
8.4.2.4 Parallel HPLC-ICP-MS and HPLC-ES-MS/MS
analysis 267
8.4.2.5 Selenium-containing proteins 267
8.4.3 Antimony 269
8.4.3.1 Recognizing Sb-containing peaks by ES-MS 269
8.4.3.2 Sb interaction with biomolecules 270
8.4.3.3 Complexation behaviour of Sb 270
8.4.4 Tin 271
8.4.4.1 Recognizing Sn-containing peaks by ES-MS 271
8.5 Conclusions 273
References 273
x Contents
9 Geological Applications of Plasma Spectrometry
Douglas L.Miles and Jennifer M. Cook 277
9.1 Introduction 277
9.2 Sampling and sample preparation 279
9.2.1 Sampling 279
9.2.2 Sample preparation 281
9.2.2.1 Comminution 281
9.2.2.2 Sample decomposition and dissolution 283
9.2.2.2.1 Decomposition with acids 284
9.2.2.2.2 Decomposition by fusion 286
9.2.2.2.3 Microwave-assisted decomposition 287
9.2.2.2.4 Selective extraction schemes 289
9.3 Determination of major elements 290
9.4 Determination of trace elements 291
9.5 Determination of the rare earth and other incompatible
trace elements 293
9.5.1 Background 293
9.5.2 Determination of the REEs by ICP-AES 294
9.5.3 Determination of the REEs by ICP-MS 295
9.5.4 Determination of other incompatible elements 297
9.6 Determination of gold and the PGEs 299
9.7 Measurement of isotope ratios 302
9.8 Laser ablation 304
9.8.1 Analysis of fluid inclusions 310
9.8.2 In situ determination of isotope ratios 311
9.9 Future trends 312
References 315
10 Environmental and Clinical Applications of Inductively Coupled
Plasma Spectrometry Anne P. Vonderheide, Baki B.M. Sadi,
Karen L. Sutton, Jodi R. Shann and Joseph A. Caruso 338
10.1 Introduction 338
10.2 Analysis of air 339
10.2.1 Introduction 339
10.2.2 Sampling 339
10.2.3 Sample preparation 340
10.2.4 Interferences 340
10.2.5 Applications 341
10.3 Analysis of water 341
10.3.1 Introduction 341
10.3.2 Sample collection and preparation 343
10.3.3 Sample clean-up and interference removal 343
10.3.4 Preconcentration 344
10.3.5 Hydride generation 344
Contents xi
10.3.6 Elemental speciation studies 345
10.3.7 Analysis of non-metals 346
10.4 Analysis of clinical samples 348
10.4.1 Introduction 348
10.4.2 Single element/multi-element 349
10.4.3 Types of mass spectrometers in use 349
10.4.4 Sample introduction 355
10.4.5 Speciation of elements 356
10.5 Conclusions 361
References 361
11 Applications of Plasma Spectrometry in Food Science
Helen M. Crews, Paul Robb and Malcolm J. Baxter 387
11.1 Introduction 387
11.2 Analytical challenges 388
11.2.1 Isobaric overlap in ICP-MS 388
11.2.2 Polyatomic and doubly charged species
interferences in ICP-MS 389
11.2.3 Ionization interferences in ICP-MS 391
11.2.4 Interferences in ICP-AES 392
11.2.5 Other sources of error 392
11.3 Sample collection and storage 393
11.3.1 Uncertainty associated with sampling 393
11.4 Sample preparation 393
11.4.1 Liquid foods 394
11.4.2 Meat 394
11.4.3 Fish and shellfish 394
11.4.4 Vegetables 395
11.4.5 Fruits 395
11.4.6 Fats and oils 395
11.4.7 Cereals 396
11.4.8 Mixed fruit/whole meals/diets 396
11.5 Sample pre-treatment 396
11.5.1 Samples requiring minimal pre-treatment 396
11.5.2 Digestion of foods and related samples with acid(s) 397
11.5.3 Other techniques 398
11.5.4 Pre-concentration methods and removal of
interferences 399
11.6 Quantification 399
11.6.1 Practical considerations 400
11.6.2 Diet analysis 400
11.6.3 Isotope ratio measurements 401
11.7 Quality control 401
11.7.1 General observations 403
11.7.2 Instrument performance 403
11.7.3 Limits of detection 403
xii Contents
11.7.4 Spike and reference material recoveries 405
11.7.5 Replicate analyses 406
11.7.6 Reporting results 406
11.8 Speciation studies 406
11.8.1 Arsenic speciation 406
11.8.2 Applications using HPLC 407
11.8.3 Selenium speciation 409
11.9 Future trends 412
References 413
Index 423
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

littlewing2007

铜虫 (小有名气)


改成 .pdf 格式就行了,文件名太长了
3楼2008-06-04 23:41:30
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 6 个回答

njrlfu

至尊木虫 (知名作家)


★★★★★ 五星级,优秀推荐

资料的格式可能有点问题,请楼主检查一下,谢谢分享!
2楼2008-06-04 21:03:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

yhyu64

捐助贵宾 (职业作家)


★★★ 三星级,支持鼓励

似乎是很少见的文件格式。不过从书名看应该是一本不错的书。
6楼2008-06-06 15:06:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见