|
|
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 感谢参与,应助指数 +1 hj2006: 金币+10, ★有帮助 2014-09-27 19:08:09
为了后面的计算方便,先要做个准备:
1、 Integral{Cos(ξ*x)*e^(η*x)*dx , 0 , a}
=1/ξ* Integral{ e^(η*x)*d[Sin(ξ*x)] , 0 , a}
=e^(η*a)*Sin(ξ*a)/ ξ +η/ξ^2* Integral{ e^(η*x)*d[Cos(ξ*x)] , 0 , a}
= e^(η*a)*Sin(ξ*a)/ ξ +η*[e^(η*a)*Cos(ξ*a)-1]/ ξ^2+(η/ξ)^2*Integral{Cos(ξ*x)*e^(η*x) , 0 , a}
移项整理后得到:
Integral{Cos(ξ*x)*e^(η*x)*dx , 0 , a}={ξ* e^(η*a)*Sin(ξ*a) + η*e^(η*a)*Cos(ξ*a)- η}/[ξ^2+η^2] (1)
2、 Integral{Sin(ξ*x)*e^(η*x) , 0 , a}
=-1/ξ* Integral{ e^(η*x)*d[Cos(ξ*x)] , 0 , a}
=[1-e^(η*a)*Cos(ξ*a)]/ ξ +η/ξ^2* Integral{ e^(η*x)*d[Sin(ξ*x)] , 0 , a}
= [1-e^(η*a)*Cos(ξ*a)]/ ξ +η*[e^(η*a)*Sin(ξ*a)]/ ξ^2+(η/ξ)^2*Integral{Sin(ξ*x)*e^(η*x) , 0 , a}
移项整理后得到:
Integral{Sin(ξ*x)*e^(η*x)*dx ,0,a}={ξ-ξ* e^(η*a)*Cos(ξ*a) + η*e^(η*a)*Sin(ξ*a)}/[ξ^2+η^2] (2)
现在正式开始解决此题。为书写简便,暂记δ=[Sin(β*a)+Sinh(β*a)]/[ Cos(β*a)-Cosh(β*a)]。原式的被积函数展开后得到:
[Cos(β*x)]^2+[Cosh(β*x)]^2+δ^2*[Sin(β*x)+Sinh(β*x)]^2+2* Cos(β*x)* Cosh(β*x)+
+2*δ* Cos(β*x)* [Sin(β*x)+Sinh(β*x)]+ 2*δ* Cosh(β*x)* [Sin(β*x)+Sinh(β*x)]
=[1+Cos(2*β*x]/2+[e^(2*β*x)+e^(-2*β*x)+2]/4+δ^2*{[1- Cos(2*β*x)]/2+[e^(2*β*x)+e^(-2*β*x)-2 ]/4+ Sin(β*x)*[e^(β*x)-e^(-β*x)]}+ Cos(β*x)* [e^(β*x)+e^(-β*x)]+ δ*Sin(2*β*x)+
+δ*Cos(β*x)*[ e^(β*x)-e^(-β*x)]+δ*Sin(β*x)*[e^(β*x)+e^(-β*x)]+δ/2*[e^(2*β*x)-e^(2*β*x)]
=1+(1-δ^2)/2*Cos(2*β*x)+(1/4+δ/2+δ^2/4)*e^(2*β*x)+(1/4-δ/2+δ^2/4)* e^(-2*β*x)+
+(δ^2+δ)* Sin(β*x)*e^(β*x)+(-δ^2+δ)* Sin(β*x)*e^(-β*x)+(1+δ)* Cos(β*x)* e^(β*x)+
+(1-δ)* Cos(β*x)* e^(-β*x)+ δ*Sin(2*β*x)
因为上式中的积分为下列积分的线性组合,而它们分别可用分部积分法得到如下结果:
Integral{1*dx,0,a}=a
Integral{ Cos(2*β*x)*dx,0,a}=Sin(2*β*a)/(2*β)
Integral{ Sin(2*β*x)*dx,0,a}=[1-Cos(2*β*a)]/(2*β)
Integral{ e^(2*β*x)*dx,0,a}=[e^(2*β*a)-1]/(2*β)
Integral{ e^(-2*β*x)*dx,0,a}=[1-e^(-2*β*a)]/(2*β)
Integral{ Sin(β*x)*e^(β*x)*dx,0,a}=[1-e^(β*a)*Cos(β*a)+ e^(β*a)*Sin(β*a)]/(2*β)
Integral{ Sin(β*x)*e^(-β*x)*dx,0,a}=[1-e^(-β*a)*Cos(β*a)- e^(-β*a)*Sin(β*a)]/(2*β)
Integral{ Cos(β*x)* e^(β*x)*dx,0,a}=[ e^(β*a)*Cos(β*a)+ e^(β*a)*Sin(β*a)-1]/(2*β)
Integral{ Cos(β*x)* e^(-β*x)*dx,0,a}=[ e^(-β*a)*Sin(β*a)- e^(-β*a)*Cos(β*a)-1]/(2*β)
故原积分=a+(1-δ^2)/2* Sin(2*β*a)/(2*β) +(1/4+δ/2+δ^2/4)* [e^(2*β*a)-1]/(2*β)+
+(1/4-δ/2+δ^2/4)* [1-e^(-2*β*a)]/(2*β)
+(δ^2+δ)* [1-e^(β*a)*Cos(β*a)+ e^(β*a)*Sin(β*a)]/(2*β)
+(-δ^2+δ)* [1-e^(-β*a)*Cos(β*a)- e^(-β*a)*Sin(β*a)]/(2*β)
+(1+δ)* [ e^(β*a)*Cos(β*a)+ e^(β*a)*Sin(β*a)-1]/(2*β)
+(1-δ)* [ e^(-β*a)*Sin(β*a)- e^(-β*a)*Cos(β*a)-1]/(2*β)
+δ*[1-Cos(2*β*a)]/(2*β) |
|