24小时热门版块排行榜    

CyRhmU.jpeg
查看: 8535  |  回复: 230
【奖励】 本帖被评价197次,作者Jeaweal增加金币 156.4

Jeaweal

铁杆木虫 (著名写手)


[资源] 镁,镁合金及其复合材料 Magnesium, Magnesium Alloys, and Magnesium Composites

镁,镁合金及其复合材料 Magnesium, Magnesium Alloys, and Magnesium Composites
好书难求,望给予好评。
镁,镁合金及其复合材料 Magnesium, Magnesium Alloys, and Magnesium Composites
CONTENTS
PREFACE xv
ACKNOWLEDGMENTS xvii
1INTRODUCTION TO MAGNESIUM 1
1.1 Introduction 1
1.2 Characteristics of Pure Magnesium 4
1.2.1 Atomic Properties and Crystal Structure 4
1.2.2 Physical Properties 4
1.2.3 Electrical Properties 4
1.2.4 Mechanical Properties 5
1.3 Applications 5
1.3.1 Automotive Applications 5
1.3.2 Aerospace Applications 7
1.3.3 Medical Applications 8
1.3.4 Sports Applications 9
1.3.5 Electronic Applications 10
1.3.6 Other Applications 10
1.4 Summary 11
References 11
2SYNTHESIS TECHNIQUES FOR MAGNESIUM-BASED
MATERIALS 13
2.1 Introduction 13
2.2 Liquid Phase Processes 14
2.2.1 Sand Casting 14
2.2.2 Die Casting 15
2.2.3 Squeeze Casting 16
2.2.4 SSM Casting 17
2.2.4.1 Thixomolding 17
2.2.4.2 Rheocasting 18
2.2.5 Stir Casting 18
2.2.6 Spray Forming 19
2.2.7 Melt Infiltration Method 20
2.2.8 In SituSynthesis 21
v
vi CONTENTS
2.3 Solid Phase Process 21
2.3.1 Blending 21
2.3.2 Mechanical Alloying 23
2.3.3 Powder Consolidation (Compaction) 24
2.3.4 Sintering Methods 26
2.3.4.1 Conventional Sintering 28
2.3.4.2 Microwave Sintering 29
2.4 Disintegrated Melt Deposition Method 32
2.5 Mechanical Disintegration and Deposition Method 35
2.6 Summary 36
References 36
3MAGNESIUM ALLOYS 39
3.1 Introduction 39
3.1.1 Effects of Addition of Metallic Elements on Magnesium 40
3.1.1.1 Aluminum 40
3.1.1.2 Beryllium 40
3.1.1.3 Calcium 40
3.1.1.4 Cerium 40
3.1.1.5 Copper 40
3.1.1.6 Iron 40
3.1.1.7 Lithium 40
3.1.1.8 Manganese 41
3.1.1.9 Molybdenum 41
3.1.1.10 Nickel 41
3.1.1.11 Rare Earth Metals (RE) 41
3.1.1.11.1 Neodymium 41
3.1.1.12 Silicon 41
3.1.1.13 Silver 41
3.1.1.14 Strontium 41
3.1.1.15 Thorium 42
3.1.1.16 Tin 42
3.1.1.17 Titanium 42
3.1.1.18 Yttrium 42
3.1.1.19 Zinc 42
3.1.1.20 Zirconium 42
3.1.2 Classifications of Magnesium Alloys 42
3.1.2.1 Alloy Designations 42
3.1.2.2 Temper Designations 43
3.2 Casting Alloys 44
3.2.1 Characteristics of Casting Alloys 44
3.2.2 Physical Properties of Casting Alloys 44
3.2.3 Mechanical Properties of Casting Alloys 47
CONTENTS vii
3.3 Wrought Alloys 47
3.3.1 Characteristics of Wrought Alloys 47
3.3.2 Mechanical Properties of Wrought Alloys 47
3.4 Magnesium Elektron Series Alloys 55
3.4.1 Magnesium Elektron Casting Alloys 55
3.4.2 Wrought Magnesium Elektron Alloys 56
3.5 Magnesium Alloys for Elevated Temperature Applications 62
3.5.1 Mg–Al–RE Alloys 63
3.5.2 Mg–Al–Ca Alloys 65
3.5.3 Mg–Al–Ca–RE Alloys 66
3.5.4 Mg–Zn–Al–Ca Alloys 72
3.5.5 Mg–Al–Sr Alloys 72
3.5.6 Mg–Al–Si Alloys 76
3.5.7 Mg–RE–Zn Alloys 76
3.5.8 Summary—Creep Strength 76
3.6 Magnesium-Based Bulk Metallic Glasses 76
References 81
4FUNDAMENTALS OF METAL MATRIX COMPOSITES 87
4.1 Introduction 87
4.1.1 Factors Affecting Properties of MMCs 88
4.2 Materials 89
4.2.1 Matrix 90
4.2.2 Reinforcements 90
4.3 Interface Between Matrix and Reinforcement 94
4.3.1 Tailoring the Interface for Enhanced Performance 95
4.3.2 Methods of Interface Engineering 96
4.3.3 Tailoring the Interface Through Choice of Processing Technique 96
4.3.4 Interfacial Failure 96
4.4 Theoretical Prediction of Properties 97
4.4.1 Density 97
4.4.2 Electrical Conductivity 97
4.4.2.1 Rayleigh–Maxwell Equation 97
4.4.2.2 Kerner’s Model 98
4.4.2.3 ROMs Model 98
4.4.3 Coefficient of Thermal Expansion 99
4.4.3.1 ROMs (Upper Bound) 99
4.4.3.2 Turner’s Model (Lower Bound) 99
4.4.3.3 Kerner’s Model 100
4.4.4 Elastic Modulus 100
4.4.4.1 Rule of Mixtures 100
4.4.4.2 Halpin–Tsai Model 101
4.4.4.3 Effect of Porosity on Elastic Modulus 101
viii CONTENTS
4.4.5 Yield Strength 102
4.4.5.1 Shear Lag Theories 102
4.4.5.2 Strengthening Factors 103
4.4.5.2.1 Thermal and Elastic Modulus
Mismatch 103
4.4.5.2.2 Load-bearing Effect 104
4.4.5.2.3 Orowan Strengthening 105
4.4.5.2.4 Hall–Petch Effect 105
4.4.6 Ductility 105
4.5 Summary 107
References 107
5MAGNESIUM COMPOSITES 113
5.1 Introduction 113
5.2 Materials 114
5.2.1 Matrix 114
5.2.2 Reinforcements 114
5.2.2.1 Type of Reinforcements 114
5.2.2.2 Shape of Reinforcements 116
5.2.2.3 Amount of Reinforcements 116
5.2.2.4 Length Scale of Reinforcements 116
5.2.2.5 Ductility Effects of Reinforcements 118
5.3 Magnesium-Based Composites with Al2O3 121
5.3.1 Addition of Sub-Micrometer-Size Al2O3 122
5.3.1.1 Mg Reinforced with 0.3μmAl2O3(by Disintegrated
Melt Deposition) 122
5.3.1.2 Mg Reinforced with 0.3μmAl2O3(by Powder
Metallurgy—Microwave Sintering) 123
5.3.2 Addition of Nanosize Al2O3 124
5.3.2.1 Mg Reinforced with 50 nm Al2O3(by Disintegrated
Melt Deposition) 124
5.3.2.2 Mg Reinforced with 50 nm Al2O3(by Powder
Metallurgy—Conventional Sintering) 125
5.3.2.3 Mg Reinforced with 50 nm Al2O3(by Powder
Metallurgy—Microwave Sintering) 126
5.3.2.4 AZ31B Reinforced with 50 nm Al2O3(by
Disintegrated Melt Deposition) 127
5.3.2.5 AZ31B Reinforced with 50 nm Al2O3and with Ca
addition (by Disintegrated Melt Deposition) 128
5.3.2.6 AZ31 Reinforced with 50 nm Al2O3(by Disintegrated
Melt Deposition) 129
5.3.3 Addition of Hybrid Reinforcements (with Al2O3) 130
5.3.3.1 Mg Reinforced with Al2O3of Different Sizes (by
Powder Metallurgy—Conventional Sintering) 130
CONTENTS ix
5.3.3.2 Mg Reinforced with Al2O3of Different Size (by
Powder Metallurgy—Microwave Sintering) 131
5.3.3.3 Mg Reinforced with Mg-NanoAl2O3Concentric
Alternating Macro Ring (by Powder
Metallurgy—Microwave Sintering) 132
5.3.3.4 Mg Reinforced with Al2O3and MWCNT (by Powder
Metallurgy—Microwave Sintering) 133
5.4 Magnesium-Based Composites with MgO 134
5.4.1 Addition of Nanosize MgO 135
5.4.1.1 Mg Reinforced with 36 nm MgO (by Disintegrated
Melt Deposition) 135
5.5 Magnesium-Based Composites with SiC 136
5.5.1 Addition of Micrometer-Size SiC 136
5.5.1.1 Mg and AZ91D Reinforced with 150μm SiC (by Stir
Casting) 136
5.5.1.2 Mg and AZ91 Reinforced with 100μm SiC (by Liquid
Infiltration) 137
5.5.1.3 Mg Reinforced with 40μm SiC (by Melt Stir
Technique) 138
(a) Tested at Room Temperature 138
(b) Tested at Elevated Temperatures 139
5.5.1.4 Mg Reinforced with 38μm SiC (by Disintegrated Melt
Deposition) 139
(a) Effect of Extrusion Temperature 140
(b) Effect of Heat Treatment 141
(c) Effect of Recycling 142
5.5.1.5 Mg Reinforced with 35μm SiC (by Conventional
Casting) 143
5.5.1.6 Mg Reinforced with 25μm SiC (by Disintegrated Melt
Deposition) 144
5.5.1.7 Mg Reinforced with 25μm SiC (by Conventional
Casting) 145
5.5.1.8 Mg–Al Reinforced with 20μm SiC (by Powder
Metallurgy) 146
(a) Liquid-Phase Sintering 146
(b) Solid-Phase Sintering 147
5.5.1.9 AZ91C Reinforced with 12.8μm SiC (by Vacuum Stir
Casting) 148
5.5.2 Addition of Sub-Micrometer-Size SiC 149
5.5.2.1 Mg Reinforced with 0.6μm SiC (by Disintegrated
Melt Deposition) 149
(a) Effect of Heat Treatment 150
5.5.3 Addition of Nanosize SiC 151
x CONTENTS
5.5.3.1 Mg Reinforced with 50 nm SiC (by Melt
Casting—Ultrasonic Cavitation) 151
5.5.3.2 Mg4Zn Reinforced with 50 nm SiC (by Melt
Casting—Ultrasonic Cavitation) 152
5.5.3.3 Mg6Zn Reinforced with 50 nm SiC (by Melt
Casting—Ultrasonic Cavitation) 153
(a) As-Cast Condition 153
(b) Heat-Treated Condition (T5) 154
5.5.3.4 Mg Reinforced with 45–55 nm SiC (by Powder
Metallurgy) 155
(a) Without Sintering Process 155
(b) Hybrid Microwave-Assisted Sintering 156
5.5.4 Addition of Hybrid Reinforcement (with SiC) 157
5.5.4.1 Mg Reinforced with SiC of Different Sizes (by Powder
Metallurgy—Microwave Sintering) 157
5.5.4.2 Mg Reinforced with 50 nm Al2O3and 50 nm SiC (by
Powder Metallurgy—Microwave Sintering) 158
5.5.4.3 Mg Reinforced with 50 nm SiC and MWCNT (by
Powder Metallurgy—Microwave Sintering) 159
5.6 Magnesium-Based Composites with Y2O3 160
5.6.1 Addition of Nanosize Y2O3 160
5.6.1.1 Mg Reinforced with 29 nm Y2O3(by Disintegrated
Melt Deposition) 160
5.6.1.2 Mg Reinforced with 29 nm Y2O3(by Powder
Metallurgy—Conventional Sintering) 162
5.6.1.3 Mg Reinforced with 32–36 nm Y2O3(by Disintegrated
Melt Deposition) 163
5.6.1.4 Mg Reinforced with 30–50 nm Y2O3(by Powder
Metallurgy—Microwave Sintering) 164
(a) Effect of Amount of Y2O3Addition 164
(b) Effect of Heating Rate 165
(c) Effect of Extrusion Ratio 165
5.6.2 Addition of Hybrid Reinforcements (with Y2O3) 166
5.6.2.1 Mg Reinforced with Y2O3and Nanosize Cu (by
Powder Metallurgy—Microwave Sintering) 166
5.6.2.2 Mg Reinforced with Y2O3and Nanosize Ni (by
Powder Metallurgy—Microwave Sintering) 167
5.7 Magnesium-Based Composites with ZrO2 168
5.7.1 Addition of Nanosize ZrO2 168
5.7.1.1 Mg Reinforced with 29–68 nm ZrO2(by Disintegrated
Melt Deposition) 168
5.7.1.2 Mg Reinforced with 29–68 nm ZrO2(by Powder
Metallurgy—Conventional Sintering) 169
5.8 Magnesium-Based Composites with CNT 170
CONTENTS xi
5.8.1 Addition of MWCNTs 171
5.8.1.1 Mg Reinforced with MWCNTs (by Disintegrated Melt
Deposition) 171
5.8.1.2 Mg Reinforced with MWCNTs (by Powder
Metallurgy—Conventional Sintering) 172
5.8.1.3 AZ91D Reinforced with MWCNTs (by Powder
Metallurgy—Mechanical Milling) 173
5.8.1.4 AZ91D Reinforced with MWCNTs (by Melt Stirring
Method) 174
5.8.1.5 AZ31 Reinforced with CNTs (by Disintegrated Melt
Deposition) 175
(a) Tensile Test 175
(b) Compression Test 176
5.9 Magnesium-Based Composites with Metallic Additions 176
5.9.1 Addition of Micrometer-Size Copper 177
5.9.1.1 Mg Reinforced with 8–11μm Cu (by Disintegrated
Melt Deposition) 177
5.9.1.2 AZ91A Reinforced with 8–11μmCu(by
Disintegrated Melt Deposition) 178
5.9.1.3 AZ91A and Mg Reinforced with 8–11μmCu(by
Disintegrated Melt Deposition) 179
5.9.2 Addition of Nanosize Copper 180
5.9.2.1 Mg Reinforced with 50 nm Cu (by Powder
Metallurgy—Microwave Sintering) 180
5.9.3 Addition of Nickel 181
5.9.3.1 Mg Reinforced with Micrometer-Size Ni (by
Disintegrated Melt Deposition) 181
5.9.4 Addition of Titanium 183
5.9.4.1 Mg Reinforced with Micrometer-Size Ti (by
Disintegrated Melt Deposition) 183
5.9.4.2 MB15 Alloy Reinforced with Micrometer-Size Ti Alloy
(by Powder Metallurgy Route) 184
5.9.5 Addition of Molybdenum 185
5.9.5.1 Mg Reinforced with Micrometer-Size Mo (by
Disintegrated Melt Deposition) 185
5.9.6 Addition of Aluminum 186
5.9.6.1 Mg Reinforced with Micrometer-Size Al (by Powder
Metallurgy—Microwave Sintering) 186
5.9.6.2 Mg Reinforced with 18 nm Al (by Powder
Metallurgy—Conventional Sintering) 187
5.9.7 Addition of Iron Wire Mesh 188
5.9.7.1 Mg Reinforced with Interconnected Fe Wire Mesh (by
Disintegrated Melt Deposition) 188
5.9.7.2 Mg Reinforced with Fe Wire Mesh and Carbon Fibers
(by Disintegrated Melt Deposition) 189
xii CONTENTS
5.9.7.3 Mg reinforced with Fe Wire Mesh of Different
Geometries (by Conventional Casting) 190
5.10 Bimetal Mg/Al Macrocomposite 191
5.10.1 Mg/Al Macrocomposite Containing Millimeter-Scale Al Core
Reinforcement (by Disintegrated Melt Deposition) 191
(a) Tensile Test 191
(b) Compression Test 192
5.10.2 AZ31/AA5052 Macrocomposite Containing Millimeter-Scale
Al Core Reinforcement (by Disintegrated Melt Deposition) 193
5.10.3 AZ31-Al2O3/AA5052 Macrocomposite Containing 50 nm
Al2O3and|Millimeter-Scale Al Core Reinforcement (by
Disintegrated Melt Deposition) 194
(a) Tensile Test 194
(b) Compression Test 195
5.10.4 AZ31-CNT/AA5052 Macrocomposite Containing CNTs and
Millimeter-Scale Al Core Reinforcement (by Disintegrated
Melt Deposition) 196
(a) Tensile Test 196
(b) Compression Test 197
5.11 Summary 197
References 198
6CORROSION ASPECTS OF MAGNESIUM-BASED
MATERIALS 207
6.1 Introduction 207
6.2 Types of Corrosion 209
6.2.1 Galvanic Corrosion 211
6.2.2 Pitting Corrosion 212
6.2.3 Intergranular Corrosion 212
6.2.4 Stress Corrosion Cracking 212
6.2.5 High Temperature Oxidation 213
6.3 Influence of Impurity 213
6.4 Corrosion Behavior of Magnesium-Based Materials 214
6.4.1 Addition of Rare Earth Element 214
6.4.2 Addition of Reinforcements 215
6.4.2.1 Addition of Metallic Reinforcements 215
6.4.2.2 Addition of SiC 215
6.4.2.3 Addition of Al2O3 217
6.4.2.4 Addition of Carbon Fibers 217
6.4.2.5 Addition of Multiwalled Carbon Nanotubes 218
6.5 Ways to Reduce Corrosion 219
6.5.1 Chemical Treatments 220
6.5.2 Hydride Coatings 220
CONTENTS xiii
6.5.3 Anodizing 220
6.5.4 PEO Treatment 222
6.5.5 Conversion Coatings 224
6.5.6 Thermal Spray Coatings 224
6.5.7 Organic/Polymer Coatings 226
6.6 Summary 227
References 227
7STRENGTH–DUCTILITY COMBINATIONS OF
MAGNESIUM-BASED MATERIALS 233
7.1 0.2% Yield Strength<100 MPa and Ductility Matrix 233
(a) Monolithic/Unreinforced Materials 233
(b) Composite Materials 235
7.2 0.2% Yield Strength 100–150 MPa and Ductility Matrix 235
(a) Monolithic/Unreinforced Materials 235
(b) Composite Materials 236
7.3 0.2% Yield Strength 150–200 MPa and Ductility Matrix 238
(a) Monolithic/Unreinforced Materials 238
(b) Composite Materials 239
7.4 0.2% Yield Strength 200–250 MPa and Ductility Matrix 241
(a) Monolithic/Unreinforced Materials 241
(b) Composite Materials 241
7.5 0.2% Yield Strength 250–300 MPa and Ductility Matrix 242
(a) Monolithic/Unreinforced Materials 242
(b) Composite Materials 243
7.6 0.2% Yield Strength>300 MPa and Ductility Matrix 243
(a) Composite Materials 243
APPENDIX: LIST OF SOME MAGNESIUM SUPPLIERS 249
ABOUT THE AUTHORS 251
INDEX 25
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Magnesium,_Magnesium_Alloys,_and_Magnesium_Composites____2011.pdf
  • 2014-09-21 15:39:08, 20.29 M

» 收录本帖的淘帖专辑推荐

书籍下载网站 经典资源帖 专业书籍(外文版)WM Allen的英文原版+百科
纳米机理 专业书籍之材料加工 淘贴淘宝 如何做研究&高质量文献(材料专业相关)
material science Allen的材料学 科研资料 Materials Design
收藏的好帖子 不扣金币可以不

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hucznan

金虫 (知名作家)


★★★★★ 五星级,优秀推荐

好资源。。。

[ 发自小木虫客户端 ]
26楼2014-09-23 07:22:22
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
lwg32楼
2014-09-21 15:51   回复  
五星好评  顶一下,感谢分享!
2014-09-21 16:59   回复  
五星好评  顶一下,感谢分享!
tainanlic4楼
2014-09-21 17:24   回复  
五星好评  顶一下,感谢分享!
tainanlic5楼
2014-09-21 17:35   回复  
顶一下,感谢分享!
lourry6楼
2014-09-21 18:23   回复  
五星好评  顶一下,感谢分享!
itoocute7楼
2014-09-21 18:48   回复  
五星好评  顶一下,感谢分享!
2014-09-22 06:47   回复  
一般  顶一下,感谢分享!
tcbtop9楼
2014-09-22 07:25   回复  
五星好评  顶一下,感谢分享!
27602718210楼
2014-09-22 08:11   回复  
五星好评  顶一下,感谢分享!
nkb_hit11楼
2014-09-22 08:45   回复  
五星好评  顶一下,感谢分享!
njrlfu12楼
2014-09-22 08:53   回复  
五星好评  顶一下,感谢分享!
wilson010713楼
2014-09-22 09:44   回复  
五星好评  顶一下,感谢分享!
2014-09-22 10:03   回复  
五星好评  顶一下,感谢分享!
2014-09-22 12:22   回复  
五星好评  顶一下,感谢分享!
大笨虾16楼
2014-09-22 12:46   回复  
五星好评  顶一下,感谢分享!
2014-09-22 14:01   回复  
五星好评  顶一下,感谢分享!
szqi_7518楼
2014-09-22 14:38   回复  
五星好评  顶一下,感谢分享!
2014-09-22 16:23   回复  
五星好评  顶一下,感谢分享!
29733873020楼
2014-09-22 16:35   回复  
三星好评  顶一下,感谢分享!
wtiger21楼
2014-09-22 16:49   回复  
五星好评  顶一下,感谢分享!
gqken22楼
2014-09-22 21:09   回复  
五星好评  顶一下,感谢分享!
shawn_00123楼
2014-09-22 22:06   回复  
五星好评  顶一下,感谢分享!
djz092424楼
2014-09-22 22:41   回复  
五星好评  顶一下,感谢分享!
jzx62825楼
2014-09-22 22:50   回复  
五星好评  顶一下,感谢分享!
wmnick27楼
2014-09-23 07:27   回复  
五星好评  顶一下,感谢分享!
2014-09-23 07:33   回复  
五星好评  顶一下,感谢分享!
2014-09-23 08:11   回复  
五星好评  顶一下,感谢分享!
2014-09-23 08:47   回复  
五星好评  顶一下,感谢分享!
yaoningna31楼
2014-09-23 09:06   回复  
五星好评  顶一下,感谢分享!
host.hp8832楼
2014-09-23 10:14   回复  
五星好评  顶一下,感谢分享!
iamwpp33楼
2014-09-23 10:34   回复  
五星好评  顶一下,感谢分享!
Little-pan34楼
2014-09-23 10:51   回复  
五星好评  顶一下,感谢分享!
2014-09-23 11:16   回复  
五星好评  顶一下,感谢分享!
lancercq36楼
2014-09-23 12:33   回复  
五星好评  顶一下,感谢分享!
foster00937楼
2014-09-23 13:36   回复  
五星好评  顶一下,感谢分享!
lancew38楼
2014-09-23 14:12   回复  
五星好评  顶一下,感谢分享!
Focus95539楼
2014-09-23 14:34   回复  
五星好评  顶一下,感谢分享!
pys110640楼
2014-09-23 14:41   回复  
五星好评  顶一下,感谢分享!
拾贝人41楼
2014-09-23 15:04   回复  
五星好评  顶一下,感谢分享!
2014-09-23 15:57   回复  
五星好评  顶一下,感谢分享!
x5678123443楼
2014-09-23 16:09   回复  
五星好评  顶一下,感谢分享!
jackiejia44楼
2014-09-23 17:01   回复  
五星好评  顶一下,感谢分享!
guanyongc45楼
2014-09-23 17:30   回复  
五星好评  顶一下,感谢分享!
2014-09-23 17:36   回复  
五星好评  顶一下,感谢分享!
xshk47楼
2014-09-23 19:04   回复  
五星好评  顶一下,感谢分享!
hyq1298448楼
2014-09-23 19:31   回复  
五星好评  顶一下,感谢分享!
hucznan49楼
2014-09-23 19:57   回复  
顶一下,感谢分享!
2014-09-23 20:44   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 Jeaweal 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见