24小时热门版块排行榜    

查看: 2951  |  回复: 33
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

tang_zm

新虫 (小有名气)

[求助] Fredholm积分方程解的稳定性 已有1人参与

第二类Fredholm积分方程,是否存在解的不稳定性问题,该如何讨论其解的稳定性?相关文献?谢谢!!
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tang_zm

新虫 (小有名气)

送红花一朵
引用回帖:
11楼: Originally posted by nagami at 2014-07-05 16:37:38
数学上微分方程的有个适定性问题,指输入条件,比如初始条件,或者非齐次项。稳定性指当这些条件有微小的扰动,解偏离程度也是小的。
比如以电磁场为例子,你解一个圆形区域的二维helmholtz方程,
(-Δ+k2)u=f ...

太厉害了,连我们的电磁场你都搞的这么透彻。你应该应助回贴呢,要不我怎么送金币呢?呵呵
概括一下您上面说的,就是微分方程存在不稳定性问题,由于可以通过格林函数将微分方程化为积分方程,故可将通过微分方程不稳定性讨论方法,用于积分方程稳定性讨论?还有就是您说的
“就是数值上的不稳定。但理论是稳定的吧。”这个怎么理解呢?
14楼2014-07-06 10:11:18
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 34 个回答

tang_zm

新虫 (小有名气)

求助,期待大师出现啊
2楼2014-06-26 10:43:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tang_zm

新虫 (小有名气)

顶起,继续求助中。。。
3楼2014-06-27 09:04:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tang_zm

新虫 (小有名气)

持续求助中。。。
4楼2014-06-30 08:43:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见